Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Solid angle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Solid angles in arbitrary dimensions == The solid angle subtended by the complete ({{mvar|d β 1}})-dimensional spherical surface of the unit sphere in [[Euclidean space|{{math|''d''}}-dimensional Euclidean space]] can be defined in any number of dimensions {{math|''d''}}. One often needs this solid angle factor in calculations with spherical symmetry. It is given by the formula <math display="block">\Omega_{d} = \frac{2\pi^\frac{d}{2}}{\Gamma\left(\frac{d}{2}\right)}, </math> where {{math|Ξ}} is the [[gamma function]]. When {{math|''d''}} is an integer, the gamma function can be computed explicitly.<ref>{{cite journal| last = Jackson| first = FM| year = 1993| title = Polytopes in Euclidean n-space| journal = Bulletin of the Institute of Mathematics and Its Applications| volume = 29| issue = 11/12| pages = 172β174| url = https://www.researchgate.net/publication/265585180}}</ref> It follows that <math display="block"> \Omega_{d} = \begin{cases} \frac{1}{ \left(\frac{d}{2} - 1 \right)!} 2\pi^\frac{d}{2}\ & d\text{ even} \\ \frac{\left(\frac{1}{2}\left(d - 1\right)\right)!}{(d - 1)!} 2^d \pi^{\frac{1}{2}(d - 1)}\ & d\text{ odd}. \end{cases} </math> This gives the expected results of 4{{pi}} steradians for the 3D sphere bounded by a surface of area {{math|4Ο''r''<sup>2</sup>}} and 2{{pi}} radians for the 2D circle bounded by a circumference of length {{math|2Ο''r''}}. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval {{closed-closed|β''r'', ''r''}} and this is bounded by two limiting points. The counterpart to the vector formula in arbitrary dimension was derived by Aomoto<ref>{{cite journal|first=Kazuhiko| last=Aomoto| title=Analytic structure of SchlΓ€fli function| journal=Nagoya Math. J.| volume=68| year=1977| pages=1β16| doi=10.1017/s0027763000017839| doi-access=free}}</ref><ref>{{cite journal| last1=Beck|first1=M.|last2=Robins|first2=S.|last3=Sam|first3=S. V. |year=2010 |title=Positivity theorems for solid-angle polynomials |journal=Contributions to Algebra and Geometry |volume=51|issue=2| pages=493β507 |arxiv=0906.4031 |bibcode=2009arXiv0906.4031B}}</ref> and independently by Ribando.<ref>{{cite journal| journal=Discrete & Computational Geometry| volume=36| issue=3| pages=479β487| year=2006| title= Measuring Solid Angles Beyond Dimension Three| first=Jason M.| last=Ribando| doi=10.1007/s00454-006-1253-4| doi-access=free}}</ref> It expresses them as an infinite multivariate [[Taylor series]]: <math display="block">\Omega = \Omega_d \frac{\left|\det(V)\right|}{(4\pi)^{d/2}} \sum_{\vec a\in \N_0^{\binom {d}{2}}} \left [ \frac{(-2)^{\sum_{i<j} a_{ij}}}{\prod_{i<j} a_{ij}!}\prod_i \Gamma \left (\frac{1+\sum_{m\neq i} a_{im}}{2} \right ) \right ] \vec \alpha^{\vec a}. </math> Given {{mvar|d}} unit vectors <math>\vec{v}_i</math> defining the angle, let {{mvar|V}} denote the matrix formed by combining them so the {{mvar|i}}th column is <math>\vec{v}_i</math>, and <math>\alpha_{ij} = \vec{v}_i\cdot\vec{v}_j = \alpha_{ji}, \alpha_{ii}=1</math>. The variables <math>\alpha_{ij},1 \le i < j \le d</math> form a multivariable <math>\vec \alpha = (\alpha_{12},\dotsc , \alpha_{1d}, \alpha_{23}, \dotsc, \alpha_{d-1,d}) \in \R^{\binom{d}{2}}</math>. For a "congruent" integer multiexponent <math>\vec a=(a_{12}, \dotsc, a_{1d}, a_{23}, \dotsc , a_{d-1,d}) \in \N_0^{\binom{d}{2}}, </math> define <math display="inline">\vec \alpha^{\vec a}=\prod \alpha_{ij}^{a_{ij}}</math>. Note that here <math>\N_0</math> = non-negative integers, or natural numbers beginning with 0. The notation <math>\alpha_{ji}</math> for <math>j > i</math> means the variable <math>\alpha_{ij}</math>, similarly for the exponents <math>a_{ji}</math>. Hence, the term <math display="inline">\sum_{m \ne l} a_{lm}</math> means the sum over all terms in <math>\vec a</math> in which l appears as either the first or second index. Where this series converges, it converges to the solid angle defined by the vectors.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)