Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectral radius
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Power sequence== The spectral radius is closely related to the behavior of the convergence of the power sequence of a matrix; namely as shown by the following theorem. '''Theorem.''' Let {{math|''A'' β '''C'''<sup>''n''Γ''n''</sup>}} with spectral radius {{math|''Ο''(''A'')}}. Then {{math|''Ο''(''A'') < 1}} if and only if :<math>\lim_{k \to \infty} A^k = 0.</math> On the other hand, if {{math|''Ο''(''A'') > 1}}, <math>\lim_{k \to \infty} \|A^k\| = \infty</math>. The statement holds for any choice of matrix norm on {{math|'''C'''<sup>''n''Γ''n''</sup>}}. '''Proof''' Assume that <math>A^k</math> goes to zero as <math>k</math> goes to infinity. We will show that {{math|''Ο''(''A'') < 1}}. Let {{math|('''v''', ''Ξ»'')}} be an [[eigenvector]]-[[eigenvalue]] pair for ''A''. Since {{math|''A<sup>k</sup>'''''v''' {{=}} ''Ξ»<sup>k</sup>'''''v'''}}, we have :<math>\begin{align} 0 &= \left(\lim_{k \to \infty} A^k \right) \mathbf{v} \\ &= \lim_{k \to \infty} \left(A^k\mathbf{v} \right ) \\ &= \lim_{k \to \infty} \lambda^k\mathbf{v} \\ &= \mathbf{v} \lim_{k \to \infty} \lambda^k \end{align}</math> Since {{math|'''v''' β 0}} by hypothesis, we must have :<math>\lim_{k \to \infty}\lambda^k = 0,</math> which implies <math>|\lambda| < 1</math>. Since this must be true for any eigenvalue <math>\lambda</math>, we can conclude that {{math|''Ο''(''A'') < 1}}. Now, assume the radius of {{mvar|A}} is less than {{math|1}}. From the [[Jordan normal form]] theorem, we know that for all {{math|''A'' β '''C'''<sup>''n''Γ''n''</sup>}}, there exist {{math|''V'', ''J'' β '''C'''<sup>''n''Γ''n''</sup>}} with {{mvar|V}} non-singular and {{mvar|J}} block diagonal such that: :<math>A = VJV^{-1}</math> with :<math>J=\begin{bmatrix} J_{m_1}(\lambda_1) & 0 & 0 & \cdots & 0 \\ 0 & J_{m_2}(\lambda_2) & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ 0 & \cdots & 0 & J_{m_{s-1}}(\lambda_{s-1}) & 0 \\ 0 & \cdots & \cdots & 0 & J_{m_s}(\lambda_s) \end{bmatrix}</math> where :<math>J_{m_i}(\lambda_i)=\begin{bmatrix} \lambda_i & 1 & 0 & \cdots & 0 \\ 0 & \lambda_i & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i & 1 \\ 0 & 0 & \cdots & 0 & \lambda_i \end{bmatrix}\in \mathbf{C}^{m_i \times m_i}, 1\leq i\leq s.</math> It is easy to see that :<math>A^k=VJ^kV^{-1}</math> and, since {{mvar|J}} is block-diagonal, :<math>J^k=\begin{bmatrix} J_{m_1}^k(\lambda_1) & 0 & 0 & \cdots & 0 \\ 0 & J_{m_2}^k(\lambda_2) & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \cdots & \vdots \\ 0 & \cdots & 0 & J_{m_{s-1}}^k(\lambda_{s-1}) & 0 \\ 0 & \cdots & \cdots & 0 & J_{m_s}^k(\lambda_s) \end{bmatrix}</math> Now, a standard result on the {{mvar|k}}-power of an <math>m_i \times m_i</math> Jordan block states that, for <math>k \geq m_i-1</math>: :<math>J_{m_i}^k(\lambda_i)=\begin{bmatrix} \lambda_i^k & {k \choose 1}\lambda_i^{k-1} & {k \choose 2}\lambda_i^{k-2} & \cdots & {k \choose m_i-1}\lambda_i^{k-m_i+1} \\ 0 & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} & \cdots & {k \choose m_i-2}\lambda_i^{k-m_i+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_i^k & {k \choose 1}\lambda_i^{k-1} \\ 0 & 0 & \cdots & 0 & \lambda_i^k \end{bmatrix}</math> Thus, if <math>\rho(A) < 1</math> then for all {{mvar|i}} <math>|\lambda_i| < 1</math>. Hence for all {{mvar|i}} we have: :<math>\lim_{k \to \infty}J_{m_i}^k=0</math> which implies :<math>\lim_{k \to \infty} J^k = 0.</math> Therefore, :<math>\lim_{k \to \infty}A^k=\lim_{k \to \infty}VJ^kV^{-1}=V \left (\lim_{k \to \infty}J^k \right )V^{-1}=0</math> On the other side, if <math>\rho(A)>1</math>, there is at least one element in {{mvar|J}} that does not remain bounded as {{mvar|k}} increases, thereby proving the second part of the statement.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)