Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spin quantum number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Algebra == The algebraic theory of spin is a carbon copy of the [[Angular momentum#Angular momentum in quantum mechanics|angular momentum in quantum mechanics]] theory.<ref>[[David J. Griffiths]], ''[[Introduction to Quantum Mechanics (book)]]'', Oregon, Reed College, 2018, 166 p. {{ISBN|9781107189638}}.</ref> First of all, spin satisfies the fundamental [[Canonical commutation relation|commutation relation]]: <math display="block">\ [S_i, S_j ] = i\ \hbar\ \epsilon_{ijk}\ S_k\ ,</math> <math display="block">\ \left[S_i, S^2 \right] = 0\ </math> where <math>\ \epsilon_{ijk}\ </math> is the (antisymmetric) [[Levi-Civita symbol]]. This means that it is impossible to know two coordinates of the spin at the same time because of the restriction of the [[uncertainty principle]]. Next, the [[Eigenstate|eigenvectors]] of <math>\ S^2\ </math> and <math>\ S_z\ </math> satisfy: <math display="block">\ S^2\ | s, m_s \rangle= {\hbar}^2\ s(s+1)\ | s, m_s \rangle\ </math> <math display="block">\ S_z\ | s, m_s \rangle = \hbar\ m_s\ | s, m_s \rangle\ </math> <math display="block">\ S_\pm\ | s, m_s \rangle = \hbar\ \sqrt{s(s+1) - m_s(m_s \pm 1)\ }\; | s, m_s \pm 1 \rangle\ </math> where <math>\ S_\pm = S_x \pm i S_y\ </math> are the [[ladder operator|ladder]] (or "raising" and "lowering") operators.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)