Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
String field theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Berkovits superstring field theory=== A very different supersymmetric action for the open string was constructed by Nathan Berkovits. It takes the form<ref>{{cite journal | last=Berkovits | first=Nathan | title=Super-PoincarΓ© invariant superstring field theory | journal=Nuclear Physics B | publisher=Elsevier BV | volume=450 | issue=1β2 | year=1995 | issn=0550-3213 | doi=10.1016/0550-3213(95)00259-u | pages=90β102|arxiv=hep-th/9503099| bibcode=1995NuPhB.450...90B | s2cid=14495743 }}</ref> :: <math> S = \tfrac{1}{2} \langle e^{-\Phi} Q_B e^{\Phi} | e^{-\Phi} \eta_0 e^{\Phi} \rangle - \tfrac{1}{2} \int_0^1 dt\langle e^{ -\hat{\Phi}} \partial_t e^{\hat{\Phi}}|\{e^{-\hat{\Phi}} Q_B e^{\hat{\Phi}} , e^{-\hat{\Phi}} \eta_0 e^{\hat{\Phi}} \} \rangle </math> where all of the products are performed using the <math>*</math>-product including the anticommutator <math> \{,\} </math>, and <math>\hat{\Phi}(t) </math> is any string field such that <math> \hat{\Phi}(0) = 0</math> and <math> \hat{\Phi}(1) = \Phi</math>. The string field <math> \Phi </math> is taken to be in the NS sector of the large Hilbert space, i.e. ''including'' the zero mode of <math> \xi </math>. It is not known how to incorporate the R sector, although some preliminary ideas exist.<ref>{{cite journal | last=Michishita | first=Yoji | title=A Covariant Action with a Constraint and Feynman Rules for Fermions in Open Superstring Field Theory | journal=Journal of High Energy Physics | volume=2005 | issue=1 | date=2005-01-07 | issn=1029-8479 | doi=10.1088/1126-6708/2005/01/012 | pages=012|arxiv=hep-th/0412215| bibcode=2005JHEP...01..012M |doi-access=free}}</ref> The equations of motion take the form ::<math> \eta_0 \left(e^{-\Phi} Q_B e^{\Phi} \right) = 0 .</math> The action is invariant under the gauge transformation :: <math> e^{\Phi} \to e^{Q_B \Lambda} e^{\Phi} e^{\eta_0 \Lambda'} .</math> The principal advantage of this action is that it free from any insertions of picture-changing operators. It has been shown to reproduce correctly tree level amplitudes<ref>{{cite journal | last1=Berkovits | first1=Nathan | last2=Echevarria | first2=Carlos Tello | title=Four-point amplitude from open superstring field theory | journal=Physics Letters B | publisher=Elsevier BV | volume=478 | issue=1β3 | year=2000 | issn=0370-2693 | doi=10.1016/s0370-2693(00)00246-x | pages=343β350|arxiv=hep-th/9912120| bibcode=2000PhLB..478..343B | s2cid=17003177 }}</ref> and has been found, numerically, to have a tachyon vacuum with appropriate energy.<ref>{{cite journal | last=Berkovits | first=Nathan | title=The tachyon potential in open Neveu-Schwarz string field theory | journal=Journal of High Energy Physics | volume=2000 | issue=4 | date=2000-04-19 | issn=1029-8479 | doi=10.1088/1126-6708/2000/04/022 | pages=022|doi-access=free|arxiv=hep-th/0001084| bibcode=2000JHEP...04..022B }}</ref><ref>{{cite journal | last1=Berkovits | first1=Nathan | last2=Sen | first2=Ashoke | last3=Zwiebach | first3=Barton | title=Tachyon condensation in superstring field theory | journal=Nuclear Physics B | volume=587 | issue=1β3 | year=2000 | issn=0550-3213 | doi=10.1016/s0550-3213(00)00501-0 | pages=147β178| arxiv=hep-th/0002211 | bibcode=2000NuPhB.587..147B | s2cid=11853254 }}</ref> The known analytic solutions to the classical equations of motion include the tachyon vacuum<ref>{{cite journal | last=Erler | first=Theodore | title=Analytic solution for tachyon condensation in Berkovits' open superstring field theory | journal=Journal of High Energy Physics | volume=2013 | issue=11 | year=2013 | issn=1029-8479 | doi=10.1007/jhep11(2013)007 | page=7|arxiv=1308.4400| bibcode=2013JHEP...11..007E | s2cid=119114830 }}</ref> and marginal deformations.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)