Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Student's t-test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Slope of a regression line=== Suppose one is fitting the model : <math> Y = \alpha + \beta x + \varepsilon, </math> where {{math|''x''}} is known, {{math|''Ξ±''}} and {{math|''Ξ²''}} are unknown, {{math|''Ξ΅''}} is a normally distributed random variable with mean 0 and unknown variance {{math|''Ο''<sup>2</sup>}}, and {{math|''Y''}} is the outcome of interest. We want to test the null hypothesis that the slope {{math|''Ξ²''}} is equal to some specified value {{math|''Ξ²''<sub>0</sub>}} (often taken to be 0, in which case the null hypothesis is that {{math|''x''}} and {{math|''y''}} are uncorrelated). Let : <math> \begin{align} \hat\alpha, \hat\beta &= \text{least-squares estimators}, \\ SE_{\hat\alpha}, SE_{\hat\beta} &= \text{the standard errors of least-squares estimators}. \end{align} </math> Then :<math> t_\text{score} = \frac{\hat\beta - \beta_0}{ SE_{\hat\beta} } \sim \mathcal{T}_{n-2} </math> has a ''t''-distribution with {{math|''n'' β 2}} degrees of freedom if the null hypothesis is true. The [[Simple linear regression#Normality assumption|standard error of the slope coefficient]]: : <math> SE_{\hat\beta} = \frac{\sqrt{\displaystyle \frac{1}{n - 2}\sum_{i=1}^n (y_i - \hat y_i)^2}}{\sqrt{\displaystyle \sum_{i=1}^n (x_i - \bar{x})^2}} </math> can be written in terms of the residuals. Let : <math> \begin{align} \hat\varepsilon_i &= y_i - \hat y_i = y_i - (\hat\alpha + \hat\beta x_i) = \text{residuals} = \text{estimated errors}, \\ \text{SSR} &= \sum_{i=1}^n {\hat\varepsilon_i}^2 = \text{sum of squares of residuals}. \end{align} </math> Then {{math|''t''}}<sub>score</sub> is given by : <math> t_\text{score} = \frac{(\hat\beta - \beta_0) \sqrt{n-2}}{\sqrt{\frac{SSR}{\sum_{i=1}^n (x_i - \bar{x})^2}}}. </math> Another way to determine the {{math|''t''}}<sub>score</sub> is : <math> t_\text{score} = \frac{r\sqrt{n - 2}}{\sqrt{1 - r^2}}, </math> where ''r'' is the [[Pearson correlation coefficient]]. The {{math|''t''}}<sub>score, intercept</sub> can be determined from the {{math|''t''}}<sub>score, slope</sub>: : <math> t_\text{score,intercept} = \frac{\alpha}{\beta} \frac{t_\text{score,slope}}{\sqrt{s_\text{x}^2 + \bar{x}^2}}, </math> where {{math|''s''<sub>x</sub><sup>2</sup>}} is the sample variance.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)