Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Summation
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Approximation by definite integrals== Many such approximations can be obtained by the following connection between sums and [[integral]]s, which holds for any [[monotonic function|increasing]] function ''f'': :<math>\int_{s=a-1}^{b} f(s)\ ds \le \sum_{i=a}^{b} f(i) \le \int_{s=a}^{b+1} f(s)\ ds.</math> and for any [[monotonic function|decreasing]] function ''f'': :<math>\int_{s=a}^{b+1} f(s)\ ds \le \sum_{i=a}^{b} f(i) \le \int_{s=a-1}^{b} f(s)\ ds.</math> For more general approximations, see the [[Euler–Maclaurin formula]]. For summations in which the summand is given (or can be interpolated) by an [[Riemann integral|integrable]] function of the index, the summation can be interpreted as a [[Riemann sum]] occurring in the definition of the corresponding definite integral. One can therefore expect that for instance :<math>\frac{b-a}{n}\sum_{i=0}^{n-1} f\left(a+i\frac{b-a}n\right) \approx \int_a^b f(x)\ dx,</math> since the right-hand side is by definition the limit for <math>n\to\infty</math> of the left-hand side. However, for a given summation ''n'' is fixed, and little can be said about the error in the above approximation without additional assumptions about ''f'': it is clear that for wildly oscillating functions the Riemann sum can be arbitrarily far from the Riemann integral.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)