Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sylow theorems
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Small groups are not simple === A more complex example involves the order of the smallest [[simple group]] that is not [[cyclic group|cyclic]]. [[Burnside's theorem|Burnside's ''p<sup>a</sup> q<sup>b</sup>'' theorem]] states that if the order of a group is the product of one or two [[prime power]]s, then it is [[solvable group|solvable]], and so the group is not simple, or is of prime order and is cyclic. This rules out every group up to order 30 {{nowrap|({{=}} 2 路 3 路 5)}}. If ''G'' is simple, and |''G''| = 30, then ''n''<sub>3</sub> must divide 10 ( = 2 路 5), and ''n''<sub>3</sub> must equal 1 (mod 3). Therefore, ''n''<sub>3</sub> = 10, since neither 4 nor 7 divides 10, and if ''n''<sub>3</sub> = 1 then, as above, ''G'' would have a normal subgroup of order 3, and could not be simple. ''G'' then has 10 distinct cyclic subgroups of order 3, each of which has 2 elements of order 3 (plus the identity). This means ''G'' has at least 20 distinct elements of order 3. As well, ''n''<sub>5</sub> = 6, since ''n''<sub>5</sub> must divide 6 ( = 2 路 3), and ''n''<sub>5</sub> must equal 1 (mod 5). So ''G'' also has 24 distinct elements of order 5. But the order of ''G'' is only 30, so a simple group of order 30 cannot exist. Next, suppose |''G''| = 42 = 2 路 3 路 7. Here ''n''<sub>7</sub> must divide 6 ( = 2 路 3) and ''n''<sub>7</sub> must equal 1 (mod 7), so ''n''<sub>7</sub> = 1. So, as before, ''G'' can not be simple. On the other hand, for |''G''| = 60 = 2<sup>2</sup> 路 3 路 5, then ''n''<sub>3</sub> = 10 and ''n''<sub>5</sub> = 6 is perfectly possible. And in fact, the smallest simple non-cyclic group is ''A''<sub>5</sub>, the [[alternating group]] over 5 elements. It has order 60, and has 24 [[cyclic permutation]]s of order 5, and 20 of order 3.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)