Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Table of divisors
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== 701 to 800 == {| class="wikitable" !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[701 (number)|701]] |1, 701 |2 |702 |1 |deficient, prime |- ![[702 (number)|702]] |1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702 |16 |1680 |978 |abundant, composite |- ![[703 (number)|703]] |1, 19, 37, 703 |4 |760 |57 |deficient, composite |- ![[704 (number)|704]] |1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704 |14 |1524 |820 |abundant, composite |- ![[705 (number)|705]] |1, 3, 5, 15, 47, 141, 235, 705 |8 |1152 |447 |deficient, composite |- ![[706 (number)|706]] |1, 2, 353, 706 |4 |1062 |356 |deficient, composite |- ![[707 (number)|707]] |1, 7, 101, 707 |4 |816 |109 |deficient, composite |- ![[708 (number)|708]] |1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708 |12 |1680 |972 |abundant, composite |- ![[709 (number)|709]] |1, 709 |2 |710 |1 |deficient, prime |- ![[710 (number)|710]] |1, 2, 5, 10, 71, 142, 355, 710 |8 |1296 |586 |deficient, composite |- ![[711 (number)|711]] |1, 3, 9, 79, 237, 711 |6 |1040 |329 |deficient, composite |- ![[712 (number)|712]] |1, 2, 4, 8, 89, 178, 356, 712 |8 |1350 |638 |deficient, composite |- ![[713 (number)|713]] |1, 23, 31, 713 |4 |768 |55 |deficient, composite |- ![[714 (number)|714]] |1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714 |16 |1728 |1014 |abundant, composite |- ![[715 (number)|715]] |1, 5, 11, 13, 55, 65, 143, 715 |8 |1008 |293 |deficient, composite |- ![[716 (number)|716]] |1, 2, 4, 179, 358, 716 |6 |1260 |544 |deficient, composite |- ![[717 (number)|717]] |1, 3, 239, 717 |4 |960 |243 |deficient, composite |- ![[718 (number)|718]] |1, 2, 359, 718 |4 |1080 |362 |deficient, composite |- ![[719 (number)|719]] |1, 719 |2 |720 |1 |deficient, prime |- ![[720 (number)|720]] |1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720 |30 |2418 |1698 |abundant, highly abundant, composite, highly composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[721 (number)|721]] |1, 7, 103, 721 |4 |832 |111 |deficient, composite |- ![[722 (number)|722]] |1, 2, 19, 38, 361, 722 |6 |1143 |421 |deficient, composite |- ![[723 (number)|723]] |1, 3, 241, 723 |4 |968 |245 |deficient, composite |- ![[724 (number)|724]] |1, 2, 4, 181, 362, 724 |6 |1274 |550 |deficient, composite |- ![[725 (number)|725]] |1, 5, 25, 29, 145, 725 |6 |930 |205 |deficient, composite |- ![[726 (number)|726]] |1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726 |12 |1596 |870 |abundant, composite |- ![[727 (number)|727]] |1, 727 |2 |728 |1 |deficient, prime |- ![[728 (number)|728]] |1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728 |16 |1680 |952 |abundant, composite |- ![[729 (number)|729]] |1, 3, 9, 27, 81, 243, 729 |7 |1093 |364 |deficient, composite |- ![[730 (number)|730]] |1, 2, 5, 10, 73, 146, 365, 730 |8 |1332 |602 |deficient, composite |- ![[731 (number)|731]] |1, 17, 43, 731 |4 |792 |61 |deficient, composite |- ![[732 (number)|732]] |1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 732 |12 |1736 |1004 |abundant, composite |- ![[733 (number)|733]] |1, 733 |2 |734 |1 |deficient, prime |- ![[734 (number)|734]] |1, 2, 367, 734 |4 |1104 |370 |deficient, composite |- ![[735 (number)|735]] |1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735 |12 |1368 |633 |deficient, composite |- ![[736 (number)|736]] |1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736 |12 |1512 |776 |abundant, composite |- ![[737 (number)|737]] |1, 11, 67, 737 |4 |816 |79 |deficient, composite |- ![[738 (number)|738]] |1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738 |12 |1638 |900 |abundant, composite |- ![[739 (number)|739]] |1, 739 |2 |740 |1 |deficient, prime |- ![[740 (number)|740]] |1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740 |12 |1596 |856 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[741 (number)|741]] |1, 3, 13, 19, 39, 57, 247, 741 |8 |1120 |379 |deficient, composite |- ![[742 (number)|742]] |1, 2, 7, 14, 53, 106, 371, 742 |8 |1296 |554 |deficient, composite |- ![[743 (number)|743]] |1, 743 |2 |744 |1 |deficient, prime |- ![[744 (number)|744]] |1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 744 |16 |1920 |1176 |abundant, composite |- ![[745 (number)|745]] |1, 5, 149, 745 |4 |900 |155 |deficient, composite |- ![[746 (number)|746]] |1, 2, 373, 746 |4 |1122 |376 |deficient, composite |- ![[747 (number)|747]] |1, 3, 9, 83, 249, 747 |6 |1092 |345 |deficient, composite |- ![[748 (number)|748]] |1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748 |12 |1512 |764 |abundant, composite, primitive abundant |- ![[749 (number)|749]] |1, 7, 107, 749 |4 |864 |115 |deficient, composite |- ![[750 (number)|750]] |1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 750 |16 |1872 |1122 |abundant, composite |- ![[751 (number)|751]] |1, 751 |2 |752 |1 |deficient, prime |- ![[752 (number)|752]] |1, 2, 4, 8, 16, 47, 94, 188, 376, 752 |10 |1488 |736 |deficient, composite |- ![[753 (number)|753]] |1, 3, 251, 753 |4 |1008 |255 |deficient, composite |- ![[754 (number)|754]] |1, 2, 13, 26, 29, 58, 377, 754 |8 |1260 |506 |deficient, composite |- ![[755 (number)|755]] |1, 5, 151, 755 |4 |912 |157 |deficient, composite |- ![[756 (number)|756]] |1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 756 |24 |2240 |1484 |abundant, composite |- ![[757 (number)|757]] |1, 757 |2 |758 |1 |deficient, prime |- ![[758 (number)|758]] |1, 2, 379, 758 |4 |1140 |382 |deficient, composite |- ![[759 (number)|759]] |1, 3, 11, 23, 33, 69, 253, 759 |8 |1152 |393 |deficient, composite |- ![[760 (number)|760]] |1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760 |16 |1800 |1040 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[761 (number)|761]] |1, 761 |2 |762 |1 |deficient, prime |- ![[762 (number)|762]] |1, 2, 3, 6, 127, 254, 381, 762 |8 |1536 |774 |abundant, composite |- ![[763 (number)|763]] |1, 7, 109, 763 |4 |880 |117 |deficient, composite |- ![[764 (number)|764]] |1, 2, 4, 191, 382, 764 |6 |1344 |580 |deficient, composite |- ![[765 (number)|765]] |1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765 |12 |1404 |639 |deficient, composite |- ![[766 (number)|766]] |1, 2, 383, 766 |4 |1152 |386 |deficient, composite |- ![[767 (number)|767]] |1, 13, 59, 767 |4 |840 |73 |deficient, composite |- ![[768 (number)|768]] |1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768 |18 |2044 |1276 |abundant, composite |- ![[769 (number)|769]] |1, 769 |2 |770 |1 |deficient, prime |- ![[770 (number)|770]] |1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770 |16 |1728 |958 |abundant, composite |- ![[771 (number)|771]] |1, 3, 257, 771 |4 |1032 |261 |deficient, composite |- ![[772 (number)|772]] |1, 2, 4, 193, 386, 772 |6 |1358 |586 |deficient, composite |- ![[773 (number)|773]] |1, 773 |2 |774 |1 |deficient, prime |- ![[774 (number)|774]] |1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774 |12 |1716 |942 |abundant, composite |- ![[775 (number)|775]] |1, 5, 25, 31, 155, 775 |6 |992 |217 |deficient, composite |- ![[776 (number)|776]] |1, 2, 4, 8, 97, 194, 388, 776 |8 |1470 |694 |deficient, composite |- ![[777 (number)|777]] |1, 3, 7, 21, 37, 111, 259, 777 |8 |1216 |439 |deficient, composite |- ![[778 (number)|778]] |1, 2, 389, 778 |4 |1170 |392 |deficient, composite |- ![[779 (number)|779]] |1, 19, 41, 779 |4 |840 |61 |deficient, composite |- ![[780 (number)|780]] |1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780 |24 |2352 |1572 |abundant, composite |- !''n'' !Divisors !''d''(''n'') !Ο(''n'') !''s''(''n'') !Notes |- ![[781 (number)|781]] |1, 11, 71, 781 |4 |864 |83 |deficient, composite |- ![[782 (number)|782]] |1, 2, 17, 23, 34, 46, 391, 782 |8 |1296 |514 |deficient, composite |- ![[783 (number)|783]] |1, 3, 9, 27, 29, 87, 261, 783 |8 |1200 |417 |deficient, composite |- ![[784 (number)|784]] |1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784 |15 |1767 |983 |abundant, composite |- ![[785 (number)|785]] |1, 5, 157, 785 |4 |948 |163 |deficient, composite |- ![[786 (number)|786]] |1, 2, 3, 6, 131, 262, 393, 786 |8 |1584 |798 |abundant, composite |- ![[787 (number)|787]] |1, 787 |2 |788 |1 |deficient, prime |- ![[788 (number)|788]] |1, 2, 4, 197, 394, 788 |6 |1386 |598 |deficient, composite |- ![[789 (number)|789]] |1, 3, 263, 789 |4 |1056 |267 |deficient, composite |- ![[790 (number)|790]] |1, 2, 5, 10, 79, 158, 395, 790 |8 |1440 |650 |deficient, composite |- ![[791 (number)|791]] |1, 7, 113, 791 |4 |912 |121 |deficient, composite |- ![[792 (number)|792]] |1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 792 |24 |2340 |1548 |abundant, composite |- ![[793 (number)|793]] |1, 13, 61, 793 |4 |868 |75 |deficient, composite |- ![[794 (number)|794]] |1, 2, 397, 794 |4 |1194 |400 |deficient, composite |- ![[795 (number)|795]] |1, 3, 5, 15, 53, 159, 265, 795 |8 |1296 |501 |deficient, composite |- ![[796 (number)|796]] |1, 2, 4, 199, 398, 796 |6 |1400 |604 |deficient, composite |- ![[797 (number)|797]] |1, 797 |2 |798 |1 |deficient, prime |- ![[798 (number)|798]] |1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 798 |16 |1920 |1122 |abundant, composite |- ![[799 (number)|799]] |1, 17, 47, 799 |4 |864 |65 |deficient, composite |- ![[800 (number)|800]] |1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 800 |18 |1953 |1153 |abundant, composite |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)