Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Three utilities problem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalizations=== [[File:K33 one crossing.svg|thumb|upright=0.5|Drawing of <math>K_{3,3}</math> with one crossing]] Two important characterizations of planar graphs, [[Kuratowski's theorem]] that the planar graphs are exactly the graphs that contain neither <math>K_{3,3}</math> nor the [[complete graph]] <math>K_5</math> as a subdivision, and [[Wagner's theorem]] that the planar graphs are exactly the graphs that contain neither <math>K_{3,3}</math> nor <math>K_5</math> as a [[minor (graph theory)|minor]], make use of and generalize the non-planarity of <math>K_{3,3}</math>.{{r|little}} [[Pál Turán]]'s "[[Turán's brick factory problem|brick factory problem]]" asks more generally for a formula for the [[crossing number (graph theory)|minimum number of crossings]] in a drawing of the [[complete bipartite graph]] <math>K_{a,b}</math> in terms of the numbers of vertices <math>a</math> and <math>b</math> on the two sides of the bipartition. The utility graph <math>K_{3,3}</math> may be drawn with only one crossing, but not with zero crossings, so its crossing number is one.{{r|early|ps09}}{{Clear|left}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)