Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Particle in a box=== {{Main article|Particle in a box}} Consider a particle in a one-dimensional box of length <math>L</math>. The [[Particle in a box#Wavefunctions|eigenfunctions in position and momentum space]] are <math display="block">\psi_n(x,t) =\begin{cases} A \sin(k_n x)\mathrm{e}^{-\mathrm{i}\omega_n t}, & 0 < x < L,\\ 0, & \text{otherwise,} \end{cases}</math> and <math display="block">\varphi_n(p,t)=\sqrt{\frac{\pi L}{\hbar}}\,\,\frac{n\left(1-(-1)^ne^{-ikL} \right) e^{-i \omega_n t}}{\pi ^2 n^2-k^2 L^2},</math> where <math display="inline">\omega_n=\frac{\pi^2 \hbar n^2}{8 L^2 m}</math> and we have used the [[de Broglie relation]] <math>p=\hbar k</math>. The variances of <math>x</math> and <math>p</math> can be calculated explicitly: <math display="block">\sigma_x^2=\frac{L^2}{12}\left(1-\frac{6}{n^2\pi^2}\right)</math> <math display="block">\sigma_p^2=\left(\frac{\hbar n\pi}{L}\right)^2. </math> The product of the standard deviations is therefore <math display="block">\sigma_x \sigma_p = \frac{\hbar}{2} \sqrt{\frac{n^2\pi^2}{3}-2}.</math> For all <math>n=1, \, 2, \, 3,\, \ldots</math>, the quantity <math display="inline">\sqrt{\frac{n^2\pi^2}{3}-2}</math> is greater than 1, so the uncertainty principle is never violated. For numerical concreteness, the smallest value occurs when <math>n = 1</math>, in which case <math display="block">\sigma_x \sigma_p = \frac{\hbar}{2} \sqrt{\frac{\pi^2}{3}-2} \approx 0.568 \hbar > \frac{\hbar}{2}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)