Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
VSEPR theory
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Exceptions== There are groups of compounds where VSEPR fails to predict the correct geometry. ===Some AX<sub>2</sub>E<sub>0</sub> molecules=== The shapes of heavier Group 14 element alkyne analogues (RM≡MR, where M = Si, Ge, Sn or Pb) have been computed to be bent.<ref>{{cite journal| title = Silicon, germanium, tin and lead analogues of acetylenes| first = Philip P.| last = Power| journal = [[ChemComm|Chem. Commun.]]| date = September 2003| issue = 17| pages = 2091–2101| doi = 10.1039/B212224C| pmid = 13678155}}</ref><ref>{{cite journal| title = Triple bonds between heavier Group 14 elements. A theoretical approach| first1 = Shigeru| last1 = Nagase| first2 = Kaoru| last2 = Kobayashi| first3 = Nozomi| last3 = Takagi| journal = [[Journal of Organometallic Chemistry|J. Organomet. Chem.]]| date = 6 October 2000| volume = 11 | issue = 1–2| pages = 264–271| doi = 10.1016/S0022-328X(00)00489-7}}</ref><ref>{{cite journal| title = A Stable Compound Containing a Silicon–Silicon Triple Bond| first1 = Akira| last1 = Sekiguchi| first2 = Rei| last2 = Kinjō| first3 = Masaaki| last3 = Ichinohe| journal = [[Science (journal)|Science]]| date = September 2004| volume = 305| issue = 5691| pages = 1755–1757| doi = 10.1126/science.1102209| pmid = 15375262| bibcode = 2004Sci...305.1755S| s2cid = 24416825| url = http://people.ok.ubc.ca/wsmcneil/339/Sci2004.pdf}}{{dead link|date=December 2017 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> ===Some AX<sub>2</sub>E<sub>2</sub> molecules=== One example of the AX<sub>2</sub>E<sub>2</sub> geometry is molecular [[lithium oxide]], Li<sub>2</sub>O, a linear rather than bent structure, which is ascribed to its bonds being essentially ionic and the strong lithium-lithium repulsion that results.<ref>{{cite journal | last1 = Bellert | first1 = D. | last2 = Breckenridge | first2 = W. H. | year = 2001 | title = A spectroscopic determination of the bond length of the LiOLi molecule: Strong ionic bonding | journal = [[J. Chem. Phys.]] | volume = 114 | issue = 7| page = 2871 | doi = 10.1063/1.1349424 | bibcode = 2001JChPh.114.2871B }}</ref> Another example is O(SiH<sub>3</sub>)<sub>2</sub> with an Si–O–Si angle of 144.1°, which compares to the angles in Cl<sub>2</sub>O (110.9°), (CH<sub>3</sub>)<sub>2</sub>O (111.7°), and N(CH<sub>3</sub>)<sub>3</sub> (110.9°).<ref name="Gillespie&Robinson"/> Gillespie and Robinson rationalize the Si–O–Si bond angle based on the observed ability of a ligand's lone pair to most greatly repel other electron pairs when the ligand electronegativity is greater than or equal to that of the central atom.<ref name = "Gillespie&Robinson">{{cite journal | last1 = Gillespie | first1 = R. J. | last2 = Robinson | first2 = E. A. | year = 2005 | title = Models of molecular geometry | journal = [[Chem. Soc. Rev.]] | volume = 34 | issue = 5| pages = 396–407 | doi = 10.1039/b405359c | pmid = 15852152 }}</ref> In O(SiH<sub>3</sub>)<sub>2</sub>, the central atom is more electronegative, and the lone pairs are less localized and more weakly repulsive. The larger Si–O–Si bond angle results from this and strong ligand-ligand repulsion by the relatively large -SiH<sub>3</sub> ligand.<ref name="Gillespie&Robinson"/> Burford et al. showed through X-ray diffraction studies that Cl<sub>3</sub>Al–O–PCl<sub>3</sub> has a linear Al–O–P bond angle and is therefore a non-VSEPR molecule.<ref>{{cite journal |last1=Burford |first1=Neil |last2=Phillips |first2=Andrew |last3=Schurko |first3=Robert |last4=Wasylishen |first4=Roderick |last5=Richardson |first5=John |title=Isolation and comprehensive solid state characterization of Cl<sub>3</sub>Al–O–PCl<sub>3</sub> |journal=Chemical Communications |date=1997 |volume=1997 |issue=24 |pages=2363–2364 |doi=10.1039/A705781D |url=https://doi.org/10.1039/A705781D |access-date=3 April 2024|url-access=subscription }}</ref> ===Some AX<sub>6</sub>E<sub>1</sub> and AX<sub>8</sub>E<sub>1</sub> molecules=== [[File:Xenon-hexafluoride-3D-SF.png|200px|thumb|[[Xenon hexafluoride]], which has a distorted octahedral geometry]] Some AX<sub>6</sub>E<sub>1</sub> molecules, e.g. [[xenon hexafluoride]] (XeF<sub>6</sub>) and the Te(IV) and Bi(III) anions, {{chem|TeCl|6|2-}}, {{chem|TeBr|6|2-}}, {{chem|BiCl|6|3-}}, {{chem|BiBr|6|3-}} and {{chem|BiI|6|3-}}, are octahedral, rather than pentagonal pyramids, and the lone pair does not affect the geometry to the degree predicted by VSEPR.<ref>{{cite book|last=Wells |first=A. F. |date=1984 |title=Structural Inorganic Chemistry |edition=5th |publisher=Oxford Science Publications |isbn=978-0-19-855370-0}}</ref> Similarly, the octafluoroxenate ion ({{chem|XeF|8|2-}}) in [[nitrosonium octafluoroxenate(VI)]]<ref name=Housecroft/>{{rp|498}}<ref name="Peterson1971">{{Cite journal | first3 = A.| first2 = H. | first4 = M.| title = Antiprismatic Coordination about Xenon: the Structure of Nitrosonium Octafluoroxenate(VI)| first1 = W.| last2 = Holloway| last3 = Coyle| volume = 173| journal = [[Science (journal)|Science]]| issue = 4003| pages = 1238–1239| issn = 0036-8075| doi = 10.1126/science.173.4003.1238| last4 = Williams| pmid = 17775218| last1 = Peterson| date = Sep 1971|bibcode = 1971Sci...173.1238P | s2cid = 22384146 }}</ref><ref>{{cite book| title = Molecular origami: precision scale models from paper| first1 = Robert M.| last1 = Hanson| publisher = University Science Books| year = 1995| isbn = 978-0-935702-30-9}}</ref> is a square antiprism with minimal distortion, despite having a lone pair. One rationalization is that steric crowding of the ligands allows little or no room for the non-bonding lone pair;<ref name = "Gillespie&Robinson"/> another rationalization is the [[inert-pair effect]].<ref name=Housecroft/>{{rp|214}} ===Square planar ML<sub>4</sub> complexes=== The Kepert model predicts that ML<sub>4</sub> transition metal molecules are tetrahedral in shape, and it cannot explain the formation of square planar complexes.<ref name=Housecroft/>{{rp|542}} The majority of such complexes exhibit a d<sup>8</sup> configuration as for the [[potassium tetrachloroplatinate|tetrachloroplatinate]] ({{chem|PtCl|4|2-}}) ion. The explanation of the shape of square planar complexes involves electronic effects and requires the use of [[crystal field theory]].<ref name=Housecroft/>{{rp|562–4}} ===Complexes with strong d-contribution=== [[File:Hexamethyl-tungsten-3D-balls.png|200px|thumb|[[Hexamethyltungsten]], a transition metal complex whose geometry is different from main-group coordination]] Some transition metal complexes with low d electron count have unusual geometries, which can be ascribed to d subshell bonding interaction.<ref name="d0kaupp">{{cite journal | title = "Non-VSEPR" Structures and Bonding in d<sup>0</sup> Systems | first = Martin | last = Kaupp | journal = [[Angewandte Chemie|Angew. Chem. Int. Ed. Engl.]] | year = 2001 | volume = 40 | issue = 1 | pages = 3534–3565 | doi = 10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-#| pmid = 11592184 | url = http://www.chimdocet-inorganica.it/SITO_ESERCIZI/Complementi/COMP1/VSEPREccezioni.pdf}}</ref> [[Ronald Gillespie|Gillespie]] found that this interaction produces bonding pairs that also occupy the respective [[antipodal point]]s (ligand opposed) of the sphere.<ref>{{cite journal | title = An Electron Localization Function Study of the Geometry of d<sup>0</sup> Molecules of the Period 4 Metals Ca to Mn | first1 = Ronald J. | last1 = Gillespie | first2 = Stéphane | last2 = Noury | first3 = Julien | last3 = Pilmé | first4 = Bernard | last4 = Silvi | journal = [[Inorganic Chemistry (journal)|Inorg. Chem.]] | year = 2004 | volume = 43 | issue = 10 | pages = 3248–3256 | doi = 10.1021/ic0354015| pmid = 15132634 }}</ref><ref name="Fiftyyears"/> This phenomenon is an electronic effect resulting from the bilobed shape of the underlying sd<sup>x</sup> [[hybridization (chemistry)|hybrid orbitals]].<ref>{{cite journal | last1 = Landis | first1 = C. R. | last2 = Cleveland | first2 = T. | last3 = Firman | first3 = T. K. | year = 1995 | title = Making sense of the shapes of simple metal hydrides | journal = [[J. Am. Chem. Soc.]] | volume = 117 | issue = 6| pages = 1859–1860 | doi=10.1021/ja00111a036| bibcode = 1995JAChS.117.1859L }}</ref><ref>{{cite journal | last1 = Landis | first1 = C. R. | last2 = Cleveland | first2 = T. | last3 = Firman | first3 = T. K. | year = 1996 | title = Structure of W(CH<sub>3</sub>)<sub>6</sub> | journal = [[Science (journal)|Science]] | volume = 272 | issue = 5259| pages = 179–183 |doi=10.1126/science.272.5259.179f| doi-access = free }}</ref> The repulsion of these bonding pairs leads to a different set of shapes. {| class="wikitable" style="margin:1em auto;" |- ! Molecule type ! Shape ! Geometry ! Examples |- ! ML<sub>2</sub> | [[Bent molecular geometry|Bent]] | [[File:Bent-3D-balls.png|100px]] | [[Titanium dioxide|TiO<sub>2</sub>]]<ref name="d0kaupp"/> |- ! ML<sub>3</sub> | [[Trigonal pyramidal molecular geometry|Trigonal pyramidal]] | [[File:Pyramidal-3D-balls.png|100px]] | [[Chromium trioxide|CrO<sub>3</sub>]]<ref name=cdoi>{{Cite journal | doi = 10.1021/ja077984d| title = Probing the Electronic and Structural Properties of Chromium Oxide Clusters {{chem|(CrO|3|)|''n''|-}} and (CrO<sub>3</sub>)<sub>''n''</sub> (''n'' = 1–5): Photoelectron Spectroscopy and Density Functional Calculations| journal = Journal of the American Chemical Society| volume = 130| issue = 15| pages = 5167–77| year = 2008| last1 = Zhai | first1 = H. J. | last2 = Li | first2 = S. | last3 = Dixon | first3 = D. A. | last4 = Wang | first4 = L. S. |pmid = 18327905}}</ref> |- ! ML<sub>4</sub> | [[Tetrahedral molecular geometry|Tetrahedral]] | [[File:Tetrahedral-3D-balls.png|100px]] | [[titanium tetrachloride|TiCl<sub>4</sub>]]<ref name=Housecroft/>{{rp|598–599}} |- ! ML<sub>5</sub> | [[Square pyramidal molecular geometry|Square pyramidal]] | [[File:Square-pyramidal-3D-balls.png|100px]] | [[Pentamethyltantalum|Ta(CH<sub>3</sub>)<sub>5</sub>]]<ref>{{cite journal |journal= Coord. Chem. Rev. |volume= 197 |year= 2000 |pages= 141–168 |title= Atomic orbitals, symmetry, and coordination polyhedra |first= R. Bruce |last= King | doi = 10.1016/s0010-8545(99)00226-x }}</ref> |- ! ML<sub>6</sub> | ''C<sub>3v</sub>'' [[Trigonal prismatic molecular geometry|Trigonal prismatic]] | [[File:Prismatic_TrigonalP.png|100px]] | [[Hexamethyltungsten|W(CH<sub>3</sub>)<sub>6</sub>]]<ref>{{cite journal|last1=Haalan |first1=A. |last2=Hammel |first2=A.|last3=Rydpal |first3=K. |last4=Volden |first4=H. V.|journal=[[J. Am. Chem. Soc.]]|year=1990|volume=112|pages= 4547–4549|title=The coordination geometry of gaseous hexamethyltungsten is not octahedral|doi=10.1021/ja00167a065|issue=11|bibcode=1990JAChS.112.4547H }}</ref> |} The gas phase structures of the triatomic halides of the heavier members of [[alkaline earth metal|group 2]], (i.e., calcium, strontium and barium halides, MX<sub>2</sub>), are not linear as predicted but are bent, (approximate X–M–X angles: [[calcium fluoride|CaF<sub>2</sub>]], 145°; [[strontium fluoride|SrF<sub>2</sub>]], 120°; [[barium fluoride|BaF<sub>2</sub>]], 108°; [[strontium chloride|SrCl<sub>2</sub>]], 130°; [[barium chloride|BaCl<sub>2</sub>]], 115°; [[barium bromide|BaBr<sub>2</sub>]], 115°; [[barium iodide|BaI<sub>2</sub>]], 105°).<ref name = "Greenwood">{{Greenwood&Earnshaw}}</ref> It has been proposed by [[Ronald Gillespie|Gillespie]] that this is also caused by bonding interaction of the ligands with the d subshell of the metal atom, thus influencing the molecular geometry.<ref name = "Gillespie&Robinson"/><ref>{{cite journal | doi = 10.1063/1.459748 | title = Ab initio model potential study of the equilibrium geometry of alkaline earth dihalides: MX<sub>2</sub> (M=Mg, Ca, Sr, Ba; X=F, Cl, Br, I) | year = 1991 | author = Seijo, Luis | journal = [[J. Chem. Phys.]] | volume = 94 | pages = 3762 | last2 = Barandiarán | first2 = Zoila | last3 = Huzinaga | first3 = Sigeru | issue = 5| bibcode = 1991JChPh..94.3762S | url = https://repositorio.uam.es/bitstream/10486/7315/1/41581_jchemphysseijo_91_jcp_94_3762.pdf | hdl = 10486/7315 | hdl-access = free }}</ref> ===Superheavy elements=== [[Relativistic quantum chemistry|Relativistic effects]] on the electron orbitals of [[superheavy element]]s is predicted to influence the molecular geometry of some compounds. For instance, the 6d<sub>5/2</sub> electrons in [[nihonium]] play an unexpectedly strong role in bonding, so NhF<sub>3</sub> should assume a T-shaped geometry, instead of a trigonal planar geometry like its lighter congener BF<sub>3</sub>.<ref>{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref> In contrast, the extra stability of the 7p<sub>1/2</sub> electrons in [[tennessine]] are predicted to make TsF<sub>3</sub> trigonal planar, unlike the T-shaped geometry observed for IF<sub>3</sub> and predicted for [[Astatine|At]]F<sub>3</sub>;<ref>{{Cite journal |last1=Bae |first1=Ch. |last2=Han |first2=Y.-K. |last3=Lee |first3=Yo. S. |doi=10.1021/jp026531m |title=Spin−Orbit and Relativistic Effects on Structures and Stabilities of Group 17 Fluorides EF<sub>3</sub> (E = I, At, and Element 117): Relativity Induced Stability for the ''D<sub>3h</sub>'' Structure of (117)F<sub>3</sub> |journal=The Journal of Physical Chemistry A |volume=107 |issue=6 |pages=852–858 |date=18 January 2003 |bibcode=2003JPCA..107..852B}}</ref> similarly, [[Oganesson|Og]]F<sub>4</sub> should have a tetrahedral geometry, while XeF<sub>4</sub> has a square planar geometry and [[Radon|Rn]]F<sub>4</sub> is predicted to have the same.<ref name=fluoride>{{cite journal|journal=Journal of Physical Chemistry A|volume=103|issue=8|pages=1104–1108|date=1999|title=Structures of RgFn (Rg = Xe, Rn, and Element 118. n = 2, 4.) Calculated by Two-component Spin-Orbit Methods. A Spin-Orbit Induced Isomer of (118)F<sub>4</sub>|first1=Young-Kyu|last1=Han|first2=Yoon Sup|last2=Lee|doi=10.1021/jp983665k|bibcode=1999JPCA..103.1104H}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)