Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vector field
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Line integral=== {{Main|Line integral}} A common technique in physics is to integrate a vector field along a [[differential geometry of curves|curve]], also called determining its [[line integral]]. Intuitively this is summing up all vector components in line with the tangents to the curve, expressed as their scalar products. For example, given a particle in a force field (e.g. gravitation), where each vector at some point in space represents the force acting there on the particle, the line integral along a certain path is the work done on the particle, when it travels along this path. Intuitively, it is the sum of the scalar products of the force vector and the small tangent vector in each point along the curve. The line integral is constructed analogously to the [[Riemann integral]] and it exists if the curve is rectifiable (has finite length) and the vector field is continuous. Given a vector field {{mvar|V}} and a curve {{mvar|Ξ³}}, [[parametric equation|parametrized]] by {{mvar|t}} in {{closed-closed|''a'', ''b''}} (where {{mvar|a}} and {{mvar|b}} are [[real number]]s), the line integral is defined as <math display="block">\int_\gamma V(\mathbf {x}) \cdot \mathrm{d}\mathbf {x} = \int_a^b V(\gamma(t)) \cdot \dot \gamma(t)\, \mathrm{d}t.</math> To show vector field topology one can use [[line integral convolution]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)