Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Z-transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Example:<ref>{{Cite book |last1=Proakis |first1=John |title=Digital Signal Processing Principles, Algorithms and Applications |last2=Manolakis |first2=Dimitris |publisher=PRENTICE-HALL INTERNATIONAL, INC. |edition=3rd}}</ref> ==== A) Determine the inverse Z-transform of the following by series expansion method, <math display=block>X(z) = \frac{1}{1 - 1.5 z^{-1} + 0.5 z^{-2}}</math> Solution: Case 1: ROC: <math>\left\vert Z \right\vert > 1</math> Since the ROC is the exterior of a circle, <math>x(n)</math> is causal (signal existing for nβ₯0). <math display=block>X(z) = {1\over 1 - {3\over 2}z^{-1} + {1\over 2}z^{-2}} = 1 + {{3\over 2}z^{-1}} + {{7\over 4}z^{-2}} + {{15\over 8}z^{-3}} + {{31\over 16}z^{-4}} +....</math> thus, <math display=block>\begin{align} x(n) &= \left\{1 , \frac{3}{2} , \frac{7}{4} , \frac{15}{8} , \frac{31}{16} \ldots \right\} \\ & \qquad\! \uparrow \\ \end{align}</math> (arrow indicates term at x(0)=1) Note that in each step of long division process we eliminate lowest power term of <math>z^{-1}</math>. Case 2: ROC: <math>\left\vert Z \right\vert < 0.5</math> Since the ROC is the interior of a circle, <math>x(n)</math> is anticausal (signal existing for n<0). By performing long division we get, <math display=block>X(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2} } = 2z^2 + 6z^3 +14z^4 + 30z^5 + \ldots</math> <math>\begin{align} x(n) & = \{30, 14, 6, 2, 0, 0\} \\ & \qquad \qquad \qquad \quad\ \ \, \uparrow\\ \end{align}</math> (arrow indicates term at x(0)=0) Note that in each step of long division process we eliminate lowest power term of <math>z</math>. ''Note:'' # ''When the signal is causal, we get positive powers of <math>z</math> and when the signal is anticausal, we get negative powers of <math>z</math>.'' # ''<math>z^k</math> indicates term at <math>x(-k)</math> and <math>z^{-k}</math> indicates term at <math>x(k)</math>.'' B) Determine the inverse Z-transform of the following by series expansion method, Eliminating negative powers if <math>z</math> and dividing by <math>z</math>, <math display=block>\frac{X(z)}{z} = \frac{z^2}{z(z^2 - 1.5z + 0.5)} = \frac{z}{z^2 - 1.5z + 0.5} </math> By Partial Fraction Expansion, <math display=block>\begin{align} \frac{X(z)}{z} &= \frac{z}{(z-1)(z-0.5)} = \frac{A_1}{z-0.5} + \frac{A_2}{z-1} \\[4pt] & A_1 = \left. \frac{(z-0.5) X(z)}{z} \right\vert_{z=0.5} = \frac{0.5}{(0.5-1)} = -1 \\[4pt] & A_2 = \left. \frac{(z-1) X(z)}{z} \right\vert_{z=1} = \frac{1}{1-0.5} = {2} \\[4pt] \frac{X(z)}{z} &= \frac{2}{z-1} - \frac{1}{z-0.5} \end{align}</math> Case 1: ROC:<math>\left\vert Z \right\vert > 1 </math> Both the terms are causal, hence <math>x(n)</math> is causal. <math display=block>\begin{align} x(n) &= 2{(1)^n}u(n) - 1{(0.5)^n}u(n) \\ &= (2-0.5^n) u(n) \\ \end{align}</math> Case 2: ROC:<math>\left\vert Z \right\vert < 0.5 </math> Both the terms are anticausal, hence <math>x(n)</math> is anticausal. <math>\begin{align} x(n) &= -2{(1)^n}u(-n-1) - (-1{(0.5)^n}u(-n-1) ) \\ &= (0.5^n-2) u(-n-1) \\ \end{align}</math> Case 3: ROC:<math>0.5 < \left\vert Z \right\vert < 1</math> One of the terms is causal (p=0.5 provides the causal part) and other is anticausal (p=1 provides the anticausal part), hence <math>x(n)</math> is both sided. <math>\begin{align} x(n) &= -2{(1)^n}u(-n-1) - 1{(0.5)^n}u(n) \\ &= -2u(-n-1) - 0.5^n u(n) \\ \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)