Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Applications in Finance === ==== Black-Scholes Model ==== One of the most famous applications of stochastic processes in finance is the '''[[Black-Scholes model]]''' for option pricing. Developed by [[Fischer Black]], [[Myron Scholes]], and [[Robert Solow]], this model uses '''[[Geometric Brownian motion]]''', a specific type of stochastic process, to describe the dynamics of asset prices.<ref>{{Cite journal |last1=Black |first1=Fischer |last2=Scholes |first2=Myron |date=1973 |title=The Pricing of Options and Corporate Liabilities |url=https://www.jstor.org/stable/1831029 |journal=Journal of Political Economy |volume=81 |issue=3 |pages=637β654 |doi=10.1086/260062 |jstor=1831029 |issn=0022-3808}}</ref><ref>{{Citation |last=Merton |first=Robert C. |title=Theory of rational option pricing |date=July 2005 |work=Theory of Valuation |pages=229β288 |url=http://www.worldscientific.com/doi/abs/10.1142/9789812701022_0008 |access-date=2024-09-30 |edition=2 |publisher=WORLD SCIENTIFIC |language=en |doi=10.1142/9789812701022_0008 |isbn=978-981-256-374-3|hdl=1721.1/49331 |hdl-access=free }}</ref> The model assumes that the price of a stock follows a continuous-time stochastic process and provides a closed-form solution for pricing European-style options. The Black-Scholes formula has had a profound impact on financial markets, forming the basis for much of modern options trading. The key assumption of the Black-Scholes model is that the price of a financial asset, such as a stock, follows a '''[[log-normal distribution]]''', with its continuous returns following a normal distribution. Although the model has limitations, such as the assumption of constant volatility, it remains widely used due to its simplicity and practical relevance. ==== Stochastic Volatility Models ==== Another significant application of stochastic processes in finance is in '''[[Stochastic volatility|stochastic volatility models]]''', which aim to capture the time-varying nature of market volatility. The '''[[Heston model]]'''<ref>{{Cite journal |last=Heston |first=Steven L. |date=1993 |title=A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options |url=https://www.jstor.org/stable/2962057 |journal=The Review of Financial Studies |volume=6 |issue=2 |pages=327β343 |doi=10.1093/rfs/6.2.327 |jstor=2962057 |issn=0893-9454}}</ref> is a popular example, allowing for the volatility of asset prices to follow its own stochastic process. Unlike the Black-Scholes model, which assumes constant volatility, stochastic volatility models provide a more flexible framework for modeling market dynamics, particularly during periods of high uncertainty or market stress.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)