Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stochastic process
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Applications in Computer Science === ==== Randomized Algorithms ==== Stochastic processes play a critical role in computer science, particularly in the analysis and development of '''randomized algorithms'''. These algorithms utilize random inputs to simplify problem-solving or enhance performance in complex computational tasks. For instance, Markov chains are widely used in probabilistic algorithms for optimization and sampling tasks, such as those employed in search engines like Google's PageRank.<ref name="Randomized algorithms">{{Cite book |title=Randomized algorithms |date=1995 |publisher=Cambridge University Press |isbn=978-0-511-81407-5 |editor-last=Motwani |editor-first=Rajeev |location=Cambridge New York |editor-last2=Raghavan |editor-first2=Prabhakar}}</ref> These methods balance computational efficiency with accuracy, making them invaluable for handling large datasets. Randomized algorithms are also extensively applied in areas such as cryptography, large-scale simulations, and artificial intelligence, where uncertainty must be managed effectively.<ref name="Randomized algorithms"/> ==== Queuing Theory ==== Another significant application of stochastic processes in computer science is in '''queuing theory''', which models the random arrival and service of tasks in a system.<ref>{{Cite book |last=Shortle |first=John F. |title=Fundamentals of queueing theory |last2=Thompson |first2=James M. |last3=Gross |first3=Donald |last4=Harris |first4=Carl M. |date=2017 |publisher=John Wiley & Sons |isbn=978-1-118-94352-6 |edition=Fifth |series=Wiley series in probability and statistics |location=Hoboken, New Jersey}}</ref> This is particularly relevant in network traffic analysis and server management. For instance, queuing models help predict delays, manage resource allocation, and optimize throughput in web servers and communication networks. The flexibility of stochastic models allows researchers to simulate and improve the performance of high-traffic environments. For example, queueing theory is crucial for designing efficient data centers and cloud computing infrastructures.<ref>{{Cite book |title=Fundamentals of queueing theory |date=2018 |publisher=John Wiley & Sons |isbn=978-1-118-94356-4 |edition=5 |location=Hoboken}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)