Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
7
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Integer number 7}} {{About|the number|the year|AD 7|other uses|7 (disambiguation)|and| No. 7 (disambiguation)}} {{Distinguish|⁊}} {{Infobox number |number=7 |numeral=[[septenary]] |factorization=[[prime number|prime]] |prime=4th |divisor=1, 7 |roman =VII, vii |greek prefix=[[wikt:hepta-|hepta-]]/[[wikt:hept-|hept-]] |latin prefix=[[wikt:septua-|septua-]] |lang1=[[Greek numeral]] |lang1 symbol=[[zeta|Z]], ζ |lang2=[[Amharic language|Amharic]] |lang2 symbol=፯ |lang3=[[Eastern Arabic numerals|Arabic]], [[Central Kurdish|Kurdish]], [[Persian language|Persian]] |lang3 symbol={{resize|150%|٧}} |lang4=[[Sindhi language|Sindhi]], [[Urdu numerals|Urdu]] |lang4 symbol={{resize|150%|{{lang|ur|۷}}}} |lang5=[[Bengali language|Bengali]] |lang5 symbol={{resize|150%|৭}} |lang6=[[Chinese numeral]] |lang6 symbol=七, 柒 |lang7=[[Devanāgarī]] |lang7 symbol={{resize|150%|७}} |lang8=[[Santali language|Santali]] |lang8 symbol={{resize|150%|᱗}} |lang9=[[Telugu language|Telugu]] |lang9 symbol={{resize|150%|౭}} |lang10=[[Tamil language|Tamil]] |lang10 symbol={{resize|150%|௭}} |lang11=[[Hebrew (language)|Hebrew]] |lang11 symbol={{resize|150%|ז}} |lang12=[[Khmer numerals|Khmer]] |lang12 symbol=៧ |lang13=[[Thai numerals|Thai]] |lang13 symbol=๗ |lang14=[[Kannada language|Kannada]] |lang14 symbol={{resize|150%|೭}} |lang15=[[Malayalam language|Malayalam]] |lang15 symbol=൭ |lang16=[[Armenian numerals|Armenian]]|lang16 symbol=Է|lang17=[[Babylonian cuneiform numerals|Babylonian numeral]]|lang17 symbol=𒐛|lang18=[[Egyptian numerals|Egyptian hieroglyph]]|lang18 symbol={{resize|200%|𓐀}}|lang19=[[Morse code]]|lang19 symbol={{resize|150%|_ _...}}}} '''7''' ('''seven''') is the [[natural number]] following [[6]] and preceding [[8]]. It is the only [[prime number]] preceding a [[cube (algebra)|cube]]. As an early prime number in the series of [[positive integers]], the number seven has symbolic associations in [[religion]], [[mythology]], [[superstition]] and [[philosophy]]. The seven [[classical planet]]s resulted in seven being the number of days in a week.<ref>[[Carl Benjamin Boyer|Carl B. Boyer]], ''A History of Mathematics'' (1968) p.52, 2nd edn.</ref> 7 is often considered [[luck]]y in [[Western culture]] and is often seen as highly symbolic. ==Evolution of the Arabic digit== {{More citations needed section|date=May 2024}} [[File:SevenGlyph.svg|x50px|left]] For early [[Brahmi numerals]], 7 was written more or less in one stroke as a curve that looks like an uppercase {{angbr|J}} vertically inverted (ᒉ). The western Arab peoples' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arab peoples developed the digit from a form that looked something like 6 to one that looked like an uppercase V. Both modern Arab forms influenced the European form, a two-stroke form consisting of a horizontal upper stroke joined at its right to a stroke going down to the bottom left corner, a line that is slightly curved in some font variants. As is the case with the European digit, the [[Cham script#Numerals|Cham]] and [[Khmer script#Numerals|Khmer digit]] for 7 also evolved to look like their digit 1, though in a different way, so they were also concerned with making their 7 more different. For the Khmer this often involved adding a horizontal line to the top of the digit.<ref>Georges Ifrah, ''The Universal History of Numbers: From Prehistory to the Invention of the Computer'' transl. David Bellos et al. London: The Harvill Press (1998): 395, Fig. 24.67</ref> This is analogous to the horizontal stroke through the middle that is sometimes used in [[handwriting]] in the Western world but which is almost never used in [[computer fonts]]. This horizontal stroke is, however, important to distinguish the glyph for seven from the glyph for [[1 (number)|one]] in writing that uses a long upstroke in the glyph for 1. In some Greek dialects of the early 12th century the longer line diagonal was drawn in a rather semicircular transverse line. [[File:Digital77.svg|left|x50px]] On [[seven-segment display]]s, 7 is the digit with the most common graphic variation (1, 6 and 9 also have variant glyphs). Most devices use three line segments, but devices made by some Japanese companies such as [[Sharp Corporation|Sharp]] and [[Casio]], as well as in the Koreas and Taiwan, 7 is written with four line segments because in those countries, 7 is written with a "hook" on the left, as ① in the following illustration. Further segments can give further variation. For example, [[Schindler Group|Schindler]] elevators in the United States and Canada installed or modernized from the late 1990s onwards usually use a sixteen segment display and show the digit 7 in a manner more similar to that of handwriting. [[File:sevens.svg|left|x50px]] While the shape of the character for the digit 7 has an [[ascender (typography)|ascender]] in most modern [[typeface]]s, in typefaces with [[text figures]] the character usually has a [[descender]], as, for example, in [[File:TextFigs078.svg|40px]]. [[File:Hand Written 7.svg|left|x50px]]Most people in Continental Europe,<ref>{{Cite journal |title=Aamulehti: Opetushallitus harkitsee numero 7 viivan palauttamista |author=Eeva Törmänen |date=September 8, 2011 |journal=Tekniikka & Talous |url=http://www.tekniikkatalous.fi/viihde/aamulehti+opetushallitus+harkitsee+numero+7+viivan+palauttamista/a682831 |language=fi |access-date=September 9, 2011 |archive-url=https://web.archive.org/web/20110917083226/http://www.tekniikkatalous.fi/viihde/aamulehti+opetushallitus+harkitsee+numero+7+viivan+palauttamista/a682831 |archive-date=September 17, 2011 |url-status=dead }}</ref> Indonesia,{{citation needed|date=April 2024}} and some in Britain, Ireland, Israel, Canada, and Latin America, write 7 with a line through the middle ({{strikethrough|7}}), sometimes with the top line crooked. The line through the middle is useful to clearly differentiate that digit from the digit ''one'', as they can appear similar when written in certain styles of handwriting. This form is used in official handwriting rules for [[primary school]] in Russia, Ukraine, Bulgaria, Poland, other Slavic countries,<ref>[http://www.adu.by/modules.php?name=News&file=article&sid=858 "Education writing numerals in grade 1."] {{webarchive|url=https://web.archive.org/web/20081002092040/http://www.adu.by/modules.php?name=News&file=article&sid=858 |date=2008-10-02 }}(Russian)</ref> France,<ref>[http://www.pour-enfants.fr/jeux-imprimer/apprendre/les-chiffres/ecrire-les-chiffres.png "Example of teaching materials for pre-schoolers"](French)</ref> Italy, Belgium, the Netherlands, Finland,<ref>{{Cite journal |title="Nenosen seiska" teki paluun: Tiesitkö, mistä poikkiviiva on peräisin? |author=Elli Harju |date=August 6, 2015 |journal=Iltalehti |url=https://www.iltalehti.fi/uutiset/a/2015080620139397 |language=fi}}</ref> Romania, Germany, Greece,<ref>{{cite web |url=http://ebooks.edu.gr/modules/document/file.php/DSDIM-A102/%CE%94%CE%B9%CE%B4%CE%B1%CE%BA%CF%84%CE%B9%CE%BA%CF%8C%20%CE%A0%CE%B1%CE%BA%CE%AD%CF%84%CE%BF/%CE%92%CE%B9%CE%B2%CE%BB%CE%AF%CE%BF%20%CE%9C%CE%B1%CE%B8%CE%B7%CF%84%CE%AE/10-0007-02_Mathimatika_A-Dim_BM-1.pdf |title=Μαθηματικά Α' Δημοτικού |language=el |trans-title=Mathematics for the First Grade |publisher=Ministry of Education, Research, and Religions |access-date=May 7, 2018 |page=33}}</ref> and Hungary.{{citation needed|date=September 2021}} ==In mathematics== Seven, the fourth prime number, is not only a [[Mersenne prime]] (since <math>2^3 - 1 = 7</math>) but also a [[double Mersenne prime]] since the exponent, 3, is itself a Mersenne prime.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Double Mersenne Number|url=https://mathworld.wolfram.com/DoubleMersenneNumber.html|access-date=2020-08-06|website=mathworld.wolfram.com}}</ref> It is also a [[Newman–Shanks–Williams prime]],<ref>{{Cite web |url=https://oeis.org/A088165 |title=Sloane's A088165 : NSW primes |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> a [[Woodall prime]],<ref>{{Cite web |url=https://oeis.org/A050918 |title=Sloane's A050918 : Woodall primes |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> a [[factorial prime]],<ref>{{Cite web |url=https://oeis.org/A088054 |title=Sloane's A088054 : Factorial primes |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> a [[Harshad number]], a [[lucky prime]],<ref>{{Cite web |url=https://oeis.org/A031157 |title=Sloane's A031157 : Numbers that are both lucky and prime |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> a [[happy number]] (happy prime),<ref>{{Cite web |url=https://oeis.org/A035497 |title=Sloane's A035497 : Happy primes |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> a [[safe prime]] (the only {{vanchor|Mersenne safe prime}}), a [[Leyland number#Leyland number of the second kind|Leyland number of the second kind]]<ref>{{Cite OEIS|A045575|Leyland numbers of the second kind}}</ref> and [[Leyland number#Leyland number of the second kind|Leyland prime of the second kind]]<ref>{{Cite OEIS|A123206|Leyland prime numbers of the second kind}}</ref> {{nowrap|(<math>2^5-5^2</math>),}} and the fourth [[Heegner number]].<ref>{{Cite web |url=https://oeis.org/A003173 |title=Sloane's A003173 : Heegner numbers |website=The On-Line Encyclopedia of Integer Sequences |publisher=OEIS Foundation |access-date=2016-06-01}}</ref> Seven is the lowest natural number that cannot be represented as the sum of the squares of three integers. A seven-sided shape is a [[heptagon]].<ref>{{Cite web |last=Weisstein |first=Eric W. |title=Heptagon |url=https://mathworld.wolfram.com/Heptagon.html |access-date=2020-08-25 |website=mathworld.wolfram.com}}</ref> The [[Regular polygon|regular]] ''n''-gons for ''n'' ⩽ 6 can be constructed by [[compass and straightedge]] alone, which makes the heptagon the first regular polygon that cannot be directly constructed with these simple tools.<ref>{{Cite web |last=Weisstein |first=Eric W. |title=7 |url=https://mathworld.wolfram.com/7.html |access-date=2020-08-07 |website=mathworld.wolfram.com}}</ref> 7 is the only number ''D'' for which the equation {{nowrap|1=2{{sup|''n''}} − ''D'' = ''x''{{sup|2}}}} has more than two solutions for ''n'' and ''x'' [[Natural number|natural]]. In particular, the equation {{nowrap|1=2{{sup|''n''}} − 7 = ''x''{{sup|2}}}} is known as the [[Ramanujan–Nagell equation]]. 7 is one of seven numbers in the positive [[Quadratic form|definite quadratic]] [[integer matrix]] representative of all [[Parity (mathematics)|odd]] numbers: {1, 3, 5, 7, 11, 15, 33}.<ref>{{Cite book |last1=Cohen |first1=Henri |url=https://link.springer.com/book/10.1007/978-0-387-49923-9 |title=Number Theory Volume I: Tools and Diophantine Equations |publisher=[[Springer Science+Business Media|Springer]] |year=2007 |isbn=978-0-387-49922-2 |edition=1st |series=[[Graduate Texts in Mathematics]] |volume=239 |pages=312–314 |chapter=Consequences of the Hasse–Minkowski Theorem |doi=10.1007/978-0-387-49923-9 |oclc=493636622 |zbl=1119.11001}}</ref><ref>{{Cite OEIS|A116582|Numbers from Bhargava's 33 theorem.|access-date=2024-02-03}}</ref> There are 7 [[frieze group]]s in two dimensions, consisting of [[symmetry group|symmetries]] of the [[Plane (geometry)|plane]] whose group of [[Translation (geometry)|translations]] is [[isomorphic]] to the group of [[integer]]s.<ref>{{Cite book |last1=Heyden |first1=Anders |url=https://books.google.com/books?id=4yCqCAAAQBAJ&q=seven+frieze+groups&pg=PA661 |title=Computer Vision – ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, May 28–31, 2002. Proceedings. Part II |last2=Sparr |first2=Gunnar |last3=Nielsen |first3=Mads |last4=Johansen |first4=Peter |date=2003-08-02 |publisher=Springer |isbn=978-3-540-47967-3 |pages=661 |quote=A frieze pattern can be classified into one of the 7 frieze groups...}}</ref> These are related to the [[17 (number)|17]] [[wallpaper group]]s whose transformations and [[Isometry|isometries]] repeat two-dimensional patterns in the plane.<ref>{{Cite book |author1=Grünbaum, Branko |author-link=Branko Grünbaum |author2=Shephard, G. C. |author2-link=G.C. Shephard |url-access=registration |url=https://archive.org/details/isbn_0716711931 |title=Tilings and Patterns |chapter=Section 1.4 Symmetry Groups of Tilings |publisher=W. H. Freeman and Company |location=New York |year=1987 |pages=40–45 |doi=10.2307/2323457 |jstor=2323457 |isbn=0-7167-1193-1 |oclc=13092426 |s2cid=119730123 }}</ref><ref>{{Cite OEIS |A004029 |Number of n-dimensional space groups. |access-date=2023-01-30 }}</ref> A heptagon in [[Euclidean space]] is unable to generate [[uniform tiling]]s alongside other polygons, like the regular [[pentagon]]. However, it is one of fourteen polygons that can fill a [[Euclidean tilings by convex regular polygons#Plane-vertex tilings|plane-vertex tiling]], in its case only alongside a regular [[Equilateral triangle|triangle]] and a 42-sided polygon ([[:File:3.7.42 vertex.png|3.7.42]]).<ref>{{Cite journal |first1=Branko |last1=Grünbaum |author-link=Branko Grünbaum |first2=Geoffrey |last2=Shepard |author-link2=G.C. Shephard |title=Tilings by Regular Polygons |date=November 1977 |url=http://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1978/0025570x.di021102.02p0230f.pdf |journal=[[Mathematics Magazine]] |volume=50 |issue=5 |publisher=Taylor & Francis, Ltd. |page=231 |doi=10.2307/2689529 |jstor=2689529 |s2cid=123776612 |zbl=0385.51006 |archive-date=2016-03-03 |access-date=2023-01-09 |archive-url=https://web.archive.org/web/20160303235526/http://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1978/0025570x.di021102.02p0230f.pdf |url-status=dead }}</ref><ref>{{Cite web |last=Jardine |first=Kevin |url=http://gruze.org/tilings/3_7_42_shield|title=Shield - a 3.7.42 tiling |website=Imperfect Congruence |access-date=2023-01-09 }} 3.7.42 as a unit facet in an irregular tiling.</ref> Otherwise, for any regular ''n''-sided polygon, the maximum number of intersecting diagonals (other than through its center) is at most 7.<ref>{{Cite journal |last1=Poonen |first1=Bjorn |author1-link=Bjorn Poonen |last2=Rubinstein |first2=Michael |title=The Number of Intersection Points Made by the Diagonals of a Regular Polygon |url=https://math.mit.edu/~poonen/papers/ngon.pdf |journal=SIAM Journal on Discrete Mathematics |volume=11 |issue=1 |publisher=[[Society for Industrial and Applied Mathematics]] |location=Philadelphia |year=1998 |pages=135–156 |doi=10.1137/S0895480195281246 |arxiv=math/9508209 |mr=1612877 |zbl=0913.51005 |s2cid=8673508 }}</ref> In two dimensions, there are precisely seven [[Euclidean tilings by convex regular polygons#k-uniform tilings|7-uniform]] ''Krotenheerdt'' tilings, with no other such ''k''-uniform tilings for ''k'' > 7, and it is also the only ''k'' for which the count of ''Krotenheerdt'' tilings agrees with ''k''.<ref>{{Cite OEIS |A068600 |Number of n-uniform tilings having n different arrangements of polygons about their vertices. |access-date=2023-01-09 }}</ref><ref>{{Cite journal |first1=Branko |last1=Grünbaum |author-link=Branko Grünbaum |first2=Geoffrey |last2=Shepard |author-link2=G.C. Shephard |title=Tilings by Regular Polygons |date=November 1977 |url=http://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1978/0025570x.di021102.02p0230f.pdf |journal=[[Mathematics Magazine]] |volume=50 |issue=5 |publisher=Taylor & Francis, Ltd. |page=236 |doi=10.2307/2689529 |jstor=2689529 |s2cid=123776612 |zbl=0385.51006 |archive-date=2016-03-03 |access-date=2023-01-09 |archive-url=https://web.archive.org/web/20160303235526/http://www.maa.org/sites/default/files/images/upload_library/22/Allendoerfer/1978/0025570x.di021102.02p0230f.pdf |url-status=dead }}</ref> The [[Fano plane]], the smallest possible [[finite projective plane]], has 7 points and 7 lines arranged such that every line contains 3 points and 3 lines cross every point.<ref>{{Cite book |first1=Tomaž |last1=Pisanski |first2=Brigitte |last2=Servatius |author1-link=Tomaž Pisanski |author2-link=Brigitte Servatius |title=Configurations from a Graphical Viewpoint |chapter=Section 1.1: Hexagrammum Mysticum |chapter-url=https://link.springer.com/chapter/10.1007/978-0-8176-8364-1_5 |edition=1 |publisher=[[Birkhäuser]] |series=Birkhäuser Advanced Texts |location=Boston, MA |year=2013 |pages=5–6 |isbn=978-0-8176-8363-4 |oclc=811773514 |doi=10.1007/978-0-8176-8364-1 |zbl=1277.05001 }}</ref> This is related to other appearances of the number seven in relation to [[exceptional object]]s, like the fact that the [[octonion]]s contain seven distinct square roots of −1, [[seven-dimensional cross product|seven-dimensional vectors]] have a [[cross product]], and the number of [[equiangular lines]] possible in seven-dimensional space is anomalously large.<ref>{{Cite journal |url=https://pdfs.semanticscholar.org/1f6b/ff1e992f60eb87b35c3ceed04272fb5cc298.pdf |title=Cross products of vectors in higher dimensional Euclidean spaces |first=William S. |last=Massey |author-link=William S. Massey |journal=The American Mathematical Monthly |volume=90 |issue=10 |publisher=[[Taylor & Francis, Ltd]] |date=December 1983 |pages=697–701 |doi=10.2307/2323537 |jstor=2323537 |s2cid=43318100 |zbl=0532.55011 |access-date=2023-02-23 |archive-date=2021-02-26 |archive-url=https://web.archive.org/web/20210226011747/https://pdfs.semanticscholar.org/1f6b/ff1e992f60eb87b35c3ceed04272fb5cc298.pdf |url-status=dead }}</ref><ref>{{Cite journal |last1=Baez |first1=John C. |author-link=John Baez |url=http://math.ucr.edu/home/baez/octonions/ |title=The Octonions |journal=Bulletin of the American Mathematical Society |volume=39 |issue=2 |publisher=[[American Mathematical Society]] |pages=152–153 |year=2002 |doi=10.1090/S0273-0979-01-00934-X |mr=1886087|s2cid=586512 |doi-access=free }}</ref><ref>{{Cite book|last=Stacey |first=Blake C. |title=A First Course in the Sporadic SICs |date=2021 |publisher=Springer |isbn=978-3-030-76104-2 |location=Cham, Switzerland |pages=2–4 |oclc=1253477267}}</ref>[[File:Dice Distribution (bar).svg|thumb|Graph of the probability distribution of the sum of two six-sided dice]] The lowest known dimension for an [[exotic sphere]] is the seventh dimension.<ref>{{Cite journal |last1=Behrens |first1=M. |last2=Hill |first2=M. |last3=Hopkins |first3=M. J. |last4=Mahowald |first4=M. |date=2020 |title=Detecting exotic spheres in low dimensions using coker J |url=https://onlinelibrary.wiley.com/doi/abs/10.1112/jlms.12301 |journal=Journal of the London Mathematical Society |publisher=[[London Mathematical Society]] |volume=101 |issue=3 |pages=1173 |arxiv=1708.06854 |doi=10.1112/jlms.12301 |mr=4111938 |s2cid=119170255 |zbl=1460.55017}}</ref><ref>{{Cite OEIS|A001676|Number of h-cobordism classes of smooth homotopy n-spheres.|access-date=2023-02-23}}</ref> In [[hyperbolic space]], 7 is the highest dimension for non-simplex [[Coxeter–Dynkin diagram#Hypercompact Coxeter groups (Vinberg polytopes)|hypercompact ''Vinberg polytopes'']] of rank ''n + 4'' mirrors, where there is one unique figure with eleven [[Facet (geometry)|facets]]. On the other hand, such figures with rank ''n + 3'' mirrors exist in dimensions 4, 5, 6 and 8; ''not'' in 7.<ref>{{Cite journal |last1=Tumarkin |first1=Pavel |last2=Felikson |first2=Anna |url=https://www.ams.org/journals/mosc/2008-69-00/S0077-1554-08-00172-6/S0077-1554-08-00172-6.pdf |title=On ''d''-dimensional compact hyperbolic Coxeter polytopes with ''d + 4'' facets |journal=Transactions of the Moscow Mathematical Society |volume=69 |publisher=[[American Mathematical Society]] (Translation) |location=Providence, R.I. |year=2008 |pages=105–151 |doi= 10.1090/S0077-1554-08-00172-6 |doi-access=free |mr=2549446 |s2cid=37141102 |zbl=1208.52012 }}</ref> There are seven fundamental types of [[catastrophe theory|catastrophes]].<ref>{{Cite book|last1=Antoni|first1=F. de|url=https://books.google.com/books?id=3L_sCAAAQBAJ&q=seven+fundamental+types+of+catastrophes&pg=PA13|title=COMPSTAT: Proceedings in Computational Statistics, 7th Symposium held in Rome 1986|last2=Lauro|first2=N.|last3=Rizzi|first3=A.|date=2012-12-06|publisher=Springer Science & Business Media|isbn=978-3-642-46890-2|pages=13|quote=...every catastrophe can be composed from the set of so called elementary catastrophes, which are of seven fundamental types.}}</ref> When rolling two standard six-sided [[dice]], seven has a 1 in 6 probability of being rolled, the greatest of any number.<ref>{{Cite web|last=Weisstein|first=Eric W.|title=Dice|url=https://mathworld.wolfram.com/Dice.html|access-date=2020-08-25|website=mathworld.wolfram.com}}</ref> The opposite sides of a standard six-sided die always add to 7. The [[Millennium Prize Problems]] are seven problems in [[mathematics]] that were stated by the [[Clay Mathematics Institute]] in 2000.<ref>{{Cite web |title=Millennium Problems {{!}} Clay Mathematics Institute |url=http://www.claymath.org/millennium-problems |access-date=2020-08-25 |website=www.claymath.org}}</ref> Currently, six of the problems remain [[unsolved problems in mathematics|unsolved]].<ref>{{Cite web |date=2013-12-15 |title=Poincaré Conjecture {{!}} Clay Mathematics Institute |url=http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-url=https://web.archive.org/web/20131215120130/http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture |archive-date=2013-12-15 |access-date=2020-08-25}}</ref> ===Basic calculations=== {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Multiplication]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 !16 !17 !18 !19 !20 !21 !22 !23 !24 !25 !50 !100 !1000 |- |'''7 × ''x''''' |'''7''' |{{num|14}} |{{num|21}} |{{num|28}} |{{num|35}} |{{num|42}} |{{num|49}} |{{num|56}} |{{num|63}} |{{num|70}} |{{num|77}} |{{num|84}} |{{num|91}} |{{num|98}} |{{num|105}} |{{num|112}} |{{num|119}} |{{num|126}} |{{num|133}} |{{num|140}} |{{num|147}} |{{num|154}} |{{num|161}} |{{num|168}} |{{num|175}} |{{num|350}} |{{num|700}} |{{num|7000}} |} {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Division (mathematics)|Division]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 !14 !15 |- |'''7 ÷ ''x''''' |'''7''' |3.5 |2.{{overline|3}} |1.75 |1.4 |1.1{{overline|6}} |rowspan=2 |[[1]] |0.875 |0.{{overline|7}} |0.7 |0.{{overline|63}} |0.58{{overline|3}} |0.{{overline|538461}} |0.5 |0.4{{overline|6}} |- |'''''x'' ÷ 7''' |0.<span style="text-decoration:overline">142857</span> |0.<span style="text-decoration:overline">285714</span> |0.<span style="text-decoration:overline">428571</span> |0.<span style="text-decoration:overline">571428</span> |0.<span style="text-decoration:overline">714285</span> |0.<span style="text-decoration:overline">857142</span> |1.<span style="text-decoration:overline">142857</span> |1.<span style="text-decoration:overline">285714</span> |1.<span style="text-decoration:overline">428571</span> |1.<span style="text-decoration:overline">571428</span> |1.<span style="text-decoration:overline">714285</span> |1.<span style="text-decoration:overline">857142</span> |{{num|2}} |2.<span style="text-decoration:overline">142857</span> |} {|class="wikitable" style="text-align: center; background: white" |- ! style="width:105px;"|[[Exponentiation]] !1 !2 !3 !4 !5 !6 !7 !8 !9 !10 !11 !12 !13 |- |'''7<sup>''x''</sup>''' |'''7''' |{{num|49}} |{{num|343}} |2401 |16807 |117649 |823543 |5764801 |40353607 |282475249 |1977326743 |13841287201 |96889010407 |- |'''''x''<sup>7</sup>''' |[[1]] |{{num|128}} |2187 |16384 |78125 |279936 |823543 |2097152 |4782969 |{{num|10000000}} |19487171 |35831808 |62748517 |} ====Decimal calculations==== {{num|999,999}} divided by 7 is exactly {{num|142,857}}. Therefore, when a [[vulgar fraction]] with 7 in the [[denominator]] is converted to a [[decimal]] expansion, the result has the same six-[[numerical digit|digit]] repeating sequence after the decimal point, but the sequence can start with any of those six digits.<ref>Bryan Bunch, ''The Kingdom of Infinite Number''. New York: W. H. Freeman & Company (2000): 82</ref> In [[decimal]] representation, the [[Multiplicative inverse|reciprocal]] of 7 repeats six [[Numerical digit|digits]] (as 0.{{overline|142857}}),<ref>{{Cite book |last=Wells |first=D. |url=https://archive.org/details/penguindictionar0000well_f3y1/mode/2up |title=The Penguin Dictionary of Curious and Interesting Numbers |publisher=[[Penguin Books]] |year=1987 |isbn=0-14-008029-5 |location=London |pages=171–174 |oclc=39262447 |url-access=registration |s2cid=118329153}}</ref><ref>{{Cite OEIS|A060283|Periodic part of decimal expansion of reciprocal of n-th prime (leading 0's moved to end).|access-date=2024-04-02}}</ref> whose sum when [[Cyclic number#Relation to repeating decimals|cycling]] back to [[1]] is equal to 28. == In science == ===In psychology=== * [[The Magical Number Seven, Plus or Minus Two|Seven, plus or minus two]] as a model of [[working memory]] * In Western culture, seven is consistently listed as people's favorite number<ref>{{cite web |last1=Gonzalez |first1=Robbie |title=Why Do People Love The Number Seven? |url=https://gizmodo.com/why-do-people-love-the-number-seven-so-much-1666353786 |website=Gizmodo |date=4 December 2014 |access-date=20 February 2022 }}</ref><ref>{{cite web |last1=Bellos |first1=Alex |title=The World's Most Popular Numbers [Excerpt] |url=https://www.scientificamerican.com/article/most-popular-numbers-grapes-of-math/ |website=Scientific American |access-date=20 February 2022}}</ref> * When guessing numbers 1–10, the number 7 is most likely to be picked<ref>{{cite journal |last1=Kubovy |first1=Michael |last2=Psotka |first2=Joseph |title=The predominance of seven and the apparent spontaneity of numerical choices. |journal=Journal of Experimental Psychology: Human Perception and Performance |date=May 1976 |volume=2 |issue=2 |pages=291–294 |doi=10.1037/0096-1523.2.2.291 |url=https://www.researchgate.net/publication/232582800 |access-date=20 February 2022}}</ref> * [[Seven-year itch (idiom)|Seven-year itch]], a term that suggests that happiness in a marriage declines after around seven years ==Classical antiquity== {{listen | filename = Number Seven by William Sidney Gibson - read by Ruth Golding for LibriVox's Short Nonfiction Collection Vol. 031 (2013).ogg | title = {{center|"Number Seven"<br/>by William Sidney Gibson<br/><small>Read by Ruth Golding for LibriVox</small>}} | description = {{center|Audio 00:15:59 ([https://archive.org/stream/householdwords13dick#page/454/mode/2up full text])}} | pos = right | type = speech | image = [[File:His Master's Voice (small).png|70px]] }} The [[Pythagoreans]] invested particular numbers with unique spiritual properties. The number seven was considered to be particularly interesting because it consisted of the union of the physical (number [[4]]) with the spiritual (number [[3]]).<ref>{{Cite web|url=https://www.britannica.com/topic/number-symbolism/7|title=Number symbolism – 7}}</ref> In Pythagorean [[numerology]] the number 7 means spirituality. ==Culture== The number seven had mystical and religious significance in Mesopotamian culture by the 22nd century BCE at the latest. This was likely because in the Sumerian [[sexagesimal]] number system, dividing by seven was the first division which resulted in infinitely [[repeating fraction]]s.<ref>Muroi, Kazuo (2014) [https://arxiv.org/pdf/1407.6246.pdf The Origin of the Mystical Number Seven in Mesopotamian Culture: Division by Seven in the Sexagesimal Number System]</ref> ==See also== {{Portal|Mathematics}} {{Wikiquote|7 (number)}} {{Commons category}} {{Wiktionary|seven}} * [[Diatonic scale]] (7 notes) * [[Rainbow|Seven colors in the rainbow]] * [[Seven continents]] * [[Seven liberal arts]] * [[Seven sacraments (disambiguation)]] * [[Seven virtues]] * [[Seven deadly sins]] * [[Seven Wonders of the Ancient World]] * [[New 7 Wonders of Nature]] * [[Seven Kings of Rome]] * [[Seven Laws of Noah]] * [[Seven Archangels]] * [[Seven trumpets]] * [[Seven Summits]] * [[Seven heavens]] * [[Seven seals]] * [[Seven Seas]] * [[Seven bowls]] * [[Seven necessities]] * [[Seven Sisters (disambiguation)]] * Seven days of the [[Week]] * [[Septenary|Septenary (numeral system)]] * [[Year Seven (School)]] * [[Se7en (disambiguation)]] * [[Sevens (disambiguation)]] * [[One-seventh area triangle]] * [[Seven Dwarfs]] {{clear right}} : ==Notes== {{Reflist}} ==References== * Wells, D. ''[[The Penguin Dictionary of Curious and Interesting Numbers]]'' London: [[Penguin Group]] (1987): 70–71 {{Integers|zero}} {{Authority control}} {{DEFAULTSORT:7 (Number)}} [[Category:Integers]] [[Category:7 (number)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Angbr
(
edit
)
Template:Authority control
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite OEIS
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Clear right
(
edit
)
Template:Commons category
(
edit
)
Template:Distinguish
(
edit
)
Template:Infobox number
(
edit
)
Template:Integers
(
edit
)
Template:Listen
(
edit
)
Template:More citations needed section
(
edit
)
Template:Nowrap
(
edit
)
Template:Num
(
edit
)
Template:Overline
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Strikethrough
(
edit
)
Template:Vanchor
(
edit
)
Template:Webarchive
(
edit
)
Template:Wikiquote
(
edit
)
Template:Wiktionary
(
edit
)