Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
7400-series integrated circuits
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Series of transistor–transistor logic integrated circuits}} {{redirect-multi|5|8400 series|7400 series|6400 series|5400 series|74 series|other uses|8400 (disambiguation){{!}}8400|and|7400 (disambiguation){{!}}7400|and|6400 (disambiguation){{!}}6400|and|5400 (disambiguation){{!}}5400|and|74 (disambiguation)}} {{redirect-multi|3|7402|7404|7486|the highway|Hawaii Route 7402|the asteroids|(7402) 1987 YH|and| (7404) 1988 AA5|and|7486 Hamabe|the military unit|7486th Air Defense Group}} [[File:TexasInstruments 7400 chip, view and element placement.jpg|thumb|alt=Upper half is a line diagram showing four NAND gate symbols in a rectangle. Lower half is a photo of a grey rectangular integrated circuit package with metal pins on the two long sides, and lettering on top as described in the caption|The SN7400N chip contains four two-input [[NAND gate]]s. The SN prefix indicates it was manufactured by [[Texas Instruments]].<ref>{{cite book |title=Digital Logic IC |author=R. M. Marston |date=31 October 1996 |page=21 |publisher=Newnes |isbn=9780750630184 |url=https://books.google.com/books?id=cjt462Rr90wC&q=7400+manufacturer+codes+texas+instruments&pg=PA21 |access-date=October 14, 2017}}</ref> The N suffix is a vendor-specific code indicating plastic [[Dual in-line package|DIP]] packaging. The second line of numbers (7645) is a date code; this chip was manufactured in the 45th week of 1976.<ref>{{Cite web|url=http://homepages.nildram.co.uk/~wylie/ICs/monolith.htm|archive-url=https://web.archive.org/web/20180504074623/http://homepages.nildram.co.uk/~wylie/ICs/monolith.htm|url-status=dead|title=The first monolithic integrated circuits|last=Wylie|first=Andrew|date=2013|archive-date=May 4, 2018|access-date=2019-01-19}}</ref>]] The '''7400 series''' is a popular [[logic family]] of [[transistor–transistor logic]] (TTL) [[integrated circuit]]s (ICs).<ref>Don Lancaster (1975), ''TTL Cookbook'', Indianapolis: Howard W. Sams and Co., {{ISBN|0-672-21035-5}}, preface</ref> In 1964, [[Texas Instruments]] introduced the SN5400 series of logic chips, in a ceramic [[semiconductor package]]. A low-cost plastic package SN7400 series was introduced in 1966 which quickly gained over 50% of the logic chip market, and eventually becoming ''de facto'' standardized electronic components.<ref name=":0">{{cite web |title=1963: Standard Logic IC Families Introduced |url=https://www.computerhistory.org/siliconengine/standard-logic-ic-families-introduced/ |website=[[Computer History Museum]] |archive-url=https://web.archive.org/web/20190723094744/https://www.computerhistory.org/siliconengine/standard-logic-ic-families-introduced/ |archive-date=July 23, 2019 |url-status=live}}</ref><ref name="TI_1967_Databook">{{cite book |title=1967-68 Integrated Circuits Catalog |publisher=[[Texas Instruments]] |url=https://archive.org/details/bitsavers_tidataBookts196768_16942634 |access-date=July 23, 2019}}</ref> Since the introduction of the original bipolar-transistor TTL parts, [[Pin-compatibility|pin-compatible]] parts were introduced with such features as low power [[CMOS]] technology and [[LVCMOS|lower supply voltages]]. [[Surface-mount technology|Surface mount packages]] exist for several popular logic family functions.<ref name="TI_2004_LRG">{{cite web |title=Logic Reference Guide: Bipolar, BiCMOS, and CMOS Logic Technology |url=http://focus.ti.com/lit/ml/scyb004b/scyb004b.pdf |website=[[Texas Instruments]] |archive-url=https://web.archive.org/web/20190723105156/http://www.ti.com/lit/ml/scyb004b/scyb004b.pdf |archive-date=July 23, 2019 |date=2004 |url-status=live}}</ref> == Overview == {{See also|Transistor–transistor logic#History}} The 7400 series contains hundreds of devices that provide everything from basic [[logic gate]]s, [[flip-flop (electronics)|flip-flops]], and counters, to special purpose bus transceivers and [[arithmetic logic unit]]s (ALU). Specific functions are described in a [[list of 7400 series integrated circuits]]. Some TTL parts were made with an extended military-specification temperature range. These parts are prefixed with '''54''' instead of '''74''' in the part number. The less-common '''64''' and '''84''' prefixes on [[Texas Instruments]] parts indicated an industrial temperature range. Since the 1970s, new product families have been released to replace the original 7400 series. More recent TTL-compatible logic families were manufactured using [[CMOS]] or [[BiCMOS]] technology rather than TTL. {| class="wikitable" |+ [[Texas Instruments]] prefixes for TTL temperature ranges |- ! Prefix !! Name !! Temperature range !! Remarks |- | '''54''' || Military || −55 °C to +125 °C || |- | '''64''' || Industrial || −40 °C to +85 °C || rare |- | '''74''' || Commercial || 0 °C to +70 °C || most common |} Today, [[surface-mount]]ed CMOS versions of the 7400 series are used in various applications in electronics and for [[glue logic]] in computers and industrial electronics. The original [[through-hole]] devices in [[dual in-line package]]s (DIP/DIL) were the mainstay of the industry for many decades. They are useful for rapid [[breadboard]]-prototyping and for education and remain available from most manufacturers. The fastest types and very low voltage versions are typically [[surface-mount]] only, however.{{Citation needed|date=April 2018|reason=Need citation for surface mount being faster and/or lower voltage}} [[File:KL TI SN5451 Logic IC (cropped).jpg|thumb|upright|Texas Instruments SN5451 in the original flat package]] The first part number in the series, the 7400, is a 14-pin IC containing four two-input [[NAND gate]]s. Each gate uses two input pins and one output pin, with the remaining two pins being power (+5 V) and ground. This part was made in various through-hole and surface-mount packages, including flat pack and plastic/ceramic dual in-line. Additional characters in a part number identify the package and other variations. Unlike the older [[resistor-transistor logic]] integrated circuits, bipolar TTL gates were unsuitable to be used as analog devices, providing low gain, poor stability, and low input impedance.<ref>[[Don Lancaster]], ''TTL Cookbook'', Howard W. Sams 1974, page 169</ref> Special-purpose TTL devices were used to provide interface functions such as [[Schmitt trigger]]s or [[monostable multivibrator]] timing circuits. Inverting gates could be cascaded as a [[ring oscillator]], useful for purposes where high stability was not required. === History === Although the 7400 series was the first ''de facto'' industry standard TTL logic family (i.e. second-sourced by several semiconductor companies), there were earlier TTL logic families such as: * [[Sylvania Electric Products|Sylvania]] Universal High-level Logic in 1963<ref>{{Cite web|url=http://www.computerhistory.org/atchm/the-rise-of-ttl-how-fairchild-won-a-battle-but-lost-the-war/|title=The Rise of TTL: How Fairchild Won a Battle But Lost the War {{!}} Computer History Museum|website=computerhistory.org|date=13 July 2015 |at=See section: "The Rise of TTL"|language=en-US|access-date=2018-06-17}}</ref><ref>{{Cite book|url=https://archive.org/details/bitsavers_sylvaniadaiaUniversalHighLevelLogicMay66_3459527|title=SM2927 Sylvania Universal High Level Logic May66|date=1966}}</ref><ref>{{Cite news|url=http://www.electronicdesign.com/boards/digital-ics-standard-logic|title=Digital ICs: Standard Logic|date=2002-01-07|work=Electronic Design|access-date=2018-06-17|archive-date=2018-06-17|archive-url=https://web.archive.org/web/20180617165558/http://www.electronicdesign.com/boards/digital-ics-standard-logic|url-status=dead}}</ref> * [[Motorola]] MC4000 MTTL<ref>{{Cite book|url=http://bitsavers.trailing-edge.com/components/motorola/_dataBooks/1971_Motorola_TTL_Integrated_Circuits_Data_Book.pdf|title=TTL Integrated Circuits Data Book|publisher=Motoroloa Semiconductor Products Inc.|year=1971}}</ref><ref>{{Cite book|url=https://books.google.com/books?id=nv9SAAAAMAAJ&q=mc4000|title=TTL Cookbook|last=Lancaster|first=Don|date=1974|publisher=H. W. Sams|isbn=9780672210358|pages=8|language=en}}</ref><ref name=":1">{{Cite book|url=https://archive.org/details/ttlcookbook00lanc/page/9|title=TTL Cookbook|last=Lancaster|first=Don|publisher=Sams / Prentice Hall Computer Publishing|year=1974|isbn=0-672-21035-5|pages=[https://archive.org/details/ttlcookbook00lanc/page/9 9]|url-access=registration}}</ref> * [[National Semiconductor]] DM8000<ref>{{Cite web|url=http://www.andysarcade.net/store2/dm8000-series-ttl.html|title=DM8000 series TTL – andys-arcade|website=andysarcade.net|language=en-GB|access-date=2018-06-17}}</ref>{{Better source needed|reason=This source may not be [[WP:RS]]|date=June 2018}} * [[Fairchild Semiconductor|Fairchild]] 9300 series<ref name=":2">{{Cite web|url=http://www.computerhistory.org/siliconengine/standard-logic-ic-families-introduced/|title=1963: Standard Logic IC Families Introduced {{!}} The Silicon Engine {{!}} Computer History Museum|website=computerhistory.org|language=en|access-date=2018-06-17}}</ref><ref>{{Cite web|url=http://www.computerhistory.org/atchm/the-rise-of-ttl-how-fairchild-won-a-battle-but-lost-the-war/|title=The Rise of TTL: How Fairchild Won a Battle But Lost the War {{!}} Computer History Museum|website=computerhistory.org|date=13 July 2015 |at=See section: "Fairchild responds with TTL MSI"|language=en-US|access-date=2018-06-17}}</ref> * [[Signetics]] 8200 and 8T00<ref name=":1" /><ref name=":2" /><ref>{{Cite book|url=https://archive.org/details/bitsavers_signeticsdcs8000SeriesTTLMSI_11847693|title=Signetics Digital 8000 Series TTL/MSI and Memories Data Book|publisher=Signetics Corporation|year=1972}}</ref> The 7400 quad 2-input [[NAND gate]] was the first product in the series, introduced by [[Texas Instruments]] in a military grade metal [[Flatpack (electronics)|flat package]] (5400W) in October 1964. The pin assignment of this early series differed from the ''de facto'' standard set by the later series in [[DIP package]]s (in particular, ground was connected to pin 11 and the power supply to pin 4, compared to pins 7 and 14 for DIP packages).<ref name="TI_1967_Databook"/> The extremely popular commercial grade plastic [[Dual in-line package|DIP]] (7400N) followed in the third quarter of 1966.<ref>{{cite web | url=https://smithsonianchips.si.edu/texas/t_129.htm | title=The Chip Collection - TI Integrated Circuit Designer's Kit | publisher=Smithsonian Institution }}</ref> The 5400 and 7400 series were used in many popular [[minicomputer]]s in the 1970s and early 1980s. Some models of the DEC [[Programmed Data Processor|PDP]]-series "minis" used the [[74181]] [[Arithmetic logic unit|ALU]] as the main computing element in the [[Central processing unit|CPU]]. Other examples were the [[Data General Nova]] series and [[Hewlett-Packard]] 21MX, 1000, and 3000 series. In 1965, typical quantity-one pricing for the SN5400 (military grade, in ceramic welded [[Flatpack (electronics)|flat-pack]]) was around 22 [[USD]].<ref>{{cite book |publisher= Allied Electronics |title= Allied Industrial Electronics Catalog #660 |location= Chicago, Illinois |year= 1966 |page= 35}}</ref> As of 2007, individual commercial-grade chips in molded epoxy (plastic) packages can be purchased for approximately US$0.25 each, depending on the particular chip. <gallery> File:NXP-74AHC00D-HD-HQ.jpg|[[Die (integrated circuit)|Die]] of a 74AHC00D, manufactured by [[NXP Semiconductors|NXP]] File:SN7400 1965.jpg|SN7400 die in the original flat package, manufactured by [[Texas Instruments|TI]] File:TTL-00-die-schema.jpg|Die vs Schematic of a NAND gate in a 74H00 ([[Darlington transistor]] is visbile on the right) File:7400 Circuit.svg|Schematic of one gate in a 7400 File:74LS00 Circuit.svg|Schematic of one gate in a 74LS00 File:Schéma DM74ALS00.png|Schematic of one gate in a 74ALS00 File:Logic ICs in size comparison.JPG|Size comparison of 74HC00 in DIP vs TSSOP package </gallery> == Families == [[File:Consommations TTL-HC.png|thumb|right|Current ([[Ampere|A]]) vs speed ([[Hertz|Hz]]) comparison of various 7400 families]]<!-- NOTE: Need version with english black text along left and bottom sides. For better language portability, maybe remove all black words except units "Amp" and "Hz"? from user:sbmeirow --> 7400 series parts were constructed using [[bipolar junction transistor]]s (BJT), forming what is referred to as [[transistor–transistor logic]] or '''TTL'''. Newer series, more or less compatible in function and logic level with the original parts, use [[CMOS]] technology or a combination of the two ([[BiCMOS]]). Originally the bipolar circuits provided higher speed but consumed more power than the competing [[4000 series]] of CMOS devices. Bipolar devices are also limited to a fixed power-supply voltage, typically 5 V, while CMOS parts often support a range of supply voltages. [[Milspec]]-rated devices for use in extended temperature conditions are available as the 5400 series. Texas Instruments also manufactured [[radiation-hardened]] devices with the prefix ''RSN'', and the company offered [[beam-lead]] bare dies for integration into hybrid circuits with a ''BL'' prefix designation.<ref>{{cite book |last = The Engineering Staff |first = Texas Instruments |title = The TTL Data Book for Design Engineers |year = 1973 |edition = 1st |location = [[Dallas]], [[Texas]]}}</ref> Regular-speed TTL parts were also available for a time in the 6400 series{{snd}} these had an extended industrial temperature range of −40 °C to +85 °C. While companies such as [[Mullard]] listed 6400-series compatible parts in 1970 data sheets,<ref>Mullard FJH 101 Data Sheet, from the [http://www.datasheetarchive.com/preview/437512.html Mullard ''FJ Family TTL Integrated Circuits 1970'' databook]. {{Webarchive|url=http://arquivo.pt/wayback/20160515111834/http://www.datasheetarchive.com/preview/437512.html |date=2016-05-15 }}. May 16, 2008</ref> by 1973 there was no mention of the 6400 family in the Texas Instruments ''TTL Data Book''. Texas Instruments brought back the 6400 series in 1989 for the SN64BCT540.<ref>{{cite book |title=BiCMOS Bus Interface Logic |url=http://www.bitsavers.org/components/ti/_dataBooks/1989_TI_BiCMOS_Bus_Interface_Logic_Data_Book.pdf |publisher=Texas Instruments |date=1989}}</ref> The SN64BCTxxx series is still in production as of 2023.<ref>{{cite web |title=SN64BCTxxx |url=https://www.ti.com/logic-voltage-translation/products.html#1192=-40%3B85&1498=Catalog&1512=BCT&sort=-1;asc& |publisher=Texas Instruments |access-date=2023-06-06}}</ref> Some companies have also offered industrial extended temperature range variants using the regular 7400-series part numbers with a prefix or suffix to indicate the temperature grade. As integrated circuits in the 7400 series were made in different technologies, usually compatibility was retained with the original TTL logic levels and power-supply voltages. An integrated circuit made in CMOS is not a TTL chip, since it uses [[field-effect transistor]]s (FETs) and not bipolar junction transistors (BJT), but similar part numbers are retained to identify similar logic functions and electrical (power and I/O voltage) compatibility in the different subfamilies. Over 40 different logic subfamilies use this standardized part number scheme.<ref name="TI_2004_LRG"/>{{page needed|date=July 2018}} The headings in the following table are: ''V''<sub>cc</sub>{{snd}} power-supply voltage; ''t''<sub>pd</sub>{{snd}} maximum gate delay; ''I''<sub>OL</sub>{{snd}} maximum output current at low level; ''I''<sub>OH</sub>{{snd}} maximum output current at high level; ''t''<sub>pd</sub>, ''I''<sub>OL</sub>, and ''I''<sub>OH</sub> apply to most gates in a given family. Driver or buffer gates have higher output currents. {| class="wikitable sortable" |- ! Code ! Family ! ''V''<sub>cc</sub> ! ''t''<sub>pd</sub> ! ''I''<sub>OL</sub> ! ''I''<sub>OH</sub> ! Year{{efn|1=A question mark indicates that the year of introduction is based on the earliest data sheet or the revision history in a data sheet.}} ! Description |- !colspan=8| Bipolar TTL families{{efn|name=std5v|1=Parameters are shown for the 2-input NAND gate (74x00 or 74x1G00) at ''V''<sub>cc</sub> = 5 V,T<sub>a</sub> = 25 °C, C<sub>L</sub> = 50 pF.}} |- ! style="text-align:left" | 74 | Standard TTL | 5 V ±5% | 22 ns | 16 mA | −0.4 mA | 1966<ref name=ti_ttl_data_1981/>{{rp|6-2}} | The original 7400 logic family. Contains no characters between the "74" and the part number.<ref name=ti_std_1985/>{{rp|3–5}} |- ! style="text-align:left" | 74H | High-Speed | 5 V ±5% | 10 ns | 20 mA | −0.5 mA | 1967<ref name="kuehn1986"/>{{rp|72}} | Higher speed than the original 74 series, at the expense of power dissipation. TTL logic levels.<ref name=ti_ttl_data_1981/>{{rp|6-2}}<ref name=ti_std_1985/>{{rp|3–6}} |- ! style="text-align:left" | 74L | Low-Power | 5 V ±5% | 60 ns | 3.6 mA | −0.2 mA | 1967<ref name="kuehn1986"/>{{rp|72}} | Same technology as the original 74 family, but with larger resistors to lower power consumption at the expense of gate speed. TTL logic levels. Now obsolete.<ref name=ti_ttl_data_1981/>{{rp|6-2}} |- ! style="text-align:left" | 74S | Schottky | 5 V ±5% | 5 ns | 20 mA | −1 mA | 1969<ref name="kuehn1986"/>{{rp|72}} | Implemented using [[Schottky diode]]. High current draw. TTL logic levels.<ref name=ti_ttl_data_1981/>{{rp|6-2}}<ref name=ti_std_1985/>{{rp|3–9}} |- ! style="text-align:left" | 74LS | Low-Power Schottky | 5 V ±5% | 15 ns | 8 mA | −0.4 mA | 1971<ref name="kuehn1986"/>{{rp|72}} | Same technology as the 74S family, but with lower power consumption (2 mW) at the expense of gate speed. TTL logic levels.<ref name=ti_ttl_data_1981/>{{rp|6-2}}<ref name=ti_std_1985/>{{rp|3–8}} |- ! style="text-align:left" | 74F | FAST | 5 V ±5% | 3.9 ns | 20 mA | −1 mA | 1978<ref name=fairchild_history/> | Originally Fairchild's version of the 74AS family. TTL logic levels.<ref name=fairchild_fast_1980/>{{rp|2-9,4-3}} |- ! style="text-align:left" | 74ALS | Advanced Low-Power Schottky | 5 V ±10% | 11 ns | 8 mA | −0.4 mA | 1980<ref name="kuehn1986"/>{{rp|72}} | Same technology as the 74AS family, but with lower power consumption at the expense of gate speed. TTL logic levels.<ref name=ti_as_als_1984/>{{rp|2–4}} |- ! style="text-align:left" | 74AS | Advanced Schottky | 5 V ±10% | 4.5 ns | 20 mA | −2 mA | 1982<ref name="kuehn1986"/>{{rp|72}} | Same technology as the 74S family, but with "[[Miller effect|miller killer]]" circuitry to speed up low-to-high transitions. TTL logic levels.<ref name=ti_as_als_1984/>{{rp|2–5}} |- !colspan=8| CMOS and BiCMOS families{{efn|name=std5v}} |- ! style="text-align:left" | 74C | [[CMOS]] | 3.0–15 V | 60 ns | 0.36 mA | −0.36 mA | 1975<ref name=natsemi_cmos_1975/>{{rp|1}} | 74C is standard CMOS, similar to buffered [[4000-series integrated circuits|4000]] (4000B) series. Input levels not compatible with TTL families. The 4000A series was introduced in 1968, the 4000B around 1975. |- ! style="text-align:left" | 74HC{{efn|name=u04|1=The letter "U" when added to the family code (e.g. 74HCU) indicates an unbuffered CMOS circuit. Typically, there is only one unbuffered circuit in a family: the hex inverter (74x04). Unbuffered circuits are intended for analogue applications such as crystal oscillators.<ref name=natsemi_74hc_1983/>{{rp|4–11}}<ref name=st_74vhcu04/><ref name=ti_lv_1996/>{{rp|8-17,10-15}}<ref name=st_74lcxu04/><ref name=st_74lvxu04/><ref name=diodes_74ahcu04/><ref name=ti_74aucu04/> }} | [[HCMOS|High-Speed CMOS]] | 2.0–6.0 V | 15 ns | 4 mA | −4 mA | 1983?<ref name=natsemi_74hc_1983/>{{rp|4-2}} | Similar performance to 74LS. CMOS logic levels.<ref name="Nexperica-Family-74HC(T)">{{cite web |title=High-speed CMOS HC(T) |url=https://www.nexperia.com/products/analog-logic-ics/logic/family/HC-T/ |publisher=[[Nexperia]] |access-date=2023-06-03}}</ref><ref name=natsemi_74hc_1983/>{{rp|4-2}} |- ! style="text-align:left" | 74HCT | [[HCMOS|High-Speed CMOS]] | 5 V ±10% | 15 ns | 4.8 mA | −4.8 mA | 1983?<ref name=natsemi_74hc_1983/>{{rp|5-2}} | Similar performance to 74LS. TTL logic levels.<ref name=natsemi_74hc_1983/>{{rp|5-2}} |- ! style="text-align:left" | 74HCTLS | High-Speed CMOS | 5 V ±10% | 15 ns | 8 mA | −4 mA | 1988?<ref name=samsung_hctls_1988/>{{rp|417}} | Samsung's version of the 74HCT series. TTL logic levels.<ref name=samsung_hctls_1988/>{{rp|417}} |- ! style="text-align:left" | 74HCS | Schmitt-Trigger Integrated High-Speed CMOS | 2.0–6.0 V | 13 ns | 7.8 mA | −7.8 mA | 2019?<ref>{{cite web |title=Reduce Noise and Save Power with the New HCS Logic Family |url=https://www.ti.com/lit/an/scea069a/scea069a.pdf |website=Texas Instruments |archive-url=https://web.archive.org/web/20220615143359/https://www.ti.com/lit/an/scea069a/scea069a.pdf |archive-date=June 15, 2022 |date=April 2020 |url-status=live}}</ref> | [[Schmitt trigger]]s on all inputs.<ref name=ti_74hcs00/> CMOS logic levels. |- ! style="text-align:left" | 74AHC{{efn|name=u04}} | Advanced High-Speed CMOS | 2.0–5.5 V | 5.5 ns | 8 mA | −8 mA | | Up to three times as fast as the 74HC family. 5 V tolerant inputs. CMOS logic levels.<ref name="Nexperica-Family-74AHC(T)">{{cite web |title=Advanced High-speed CMOS AHC(T) |url=https://www.nexperia.com/products/analog-logic-ics/logic/family/AHC-T/ |publisher=[[Nexperia]] |access-date=2023-06-03}}</ref><ref name=ti_ahc_1996/>{{rp|3–5}} Equivalent to 74VHC.<ref name="TI_2004_LRG"/>{{rp|6}} |- ! style="text-align:left" | 74AHCT | Advanced High-Speed CMOS | 5 V ±10% | 6.9 ns | 8 mA | −8 mA | 1986?<ref name=idt_fct_1986/> | Up to three times as fast as the 74HCT family. TTL logic levels.<ref name="Nexperica-Family-74AHC(T)"/><ref name=ti_ahc_1996/>{{rp|3–11}} Equivalent to 74VHCT.<ref name="TI_2004_LRG"/>{{rp|6}} |- ! style="text-align:left" | 74VHC{{efn|name=u04}} | Very High-Speed CMOS | 2.0–5.5 V | 5.5 ns | 8 mA | −8 mA | 1992?<ref name=fairchild_74vhc00/> | 5 V tolerant inputs.<ref name="Nexperica-Family-74VHC(T)">{{cite web |title=Very High-speed CMOS VHC(T) |url=https://www.nexperia.com/products/analog-logic-ics/logic/family/VHC-T/ |publisher=[[Nexperia]] |access-date=2023-06-03}}</ref> Equivalent to 74AHC.<ref name="TI_2004_LRG"/>{{rp|6}} CMOS logic levels. |- ! style="text-align:left" | 74VHCT | Very High-Speed CMOS | 5 V ±10% | 6.9 ns | 8 mA | −8 mA | 1995?<ref name=natsemi_74vhct00/> | Equivalent to 74AHCT.<ref name="TI_2004_LRG"/>{{rp|6}} TTL logic levels. |- ! style="text-align:left" | 74AC | Advanced CMOS | 2.0–6.0 V | 8 ns | 24 mA | −24 mA | 1985<ref name=natsemi_lv_1992/>{{rp|1–3}} | CMOS logic levels.<ref name=fairchild_fact_1985/>{{rp|4-3}} Outputs may cause [[ground bounce]]. |- ! style="text-align:left" | 74ACT | Advanced CMOS | 5 V ±10% | 8 ns | 24 mA | −24 mA | 1985<ref name=natsemi_lv_1992/>{{rp|1–3}} | TTL logic levels.<ref name=fairchild_fact_1985/><ref name=toshiba_cmos_1990/>{{rp|AC-15}} Outputs may cause [[ground bounce]]. |- ! style="text-align:left" | 74ACQ | Advanced CMOS with "quiet" outputs | 2.0–6.0 V | 6.5 ns | 24 mA | −24 mA | 1989<ref name=fairchild_history/> | Fairchild's "Quiet Series" offering lower ringing and [[ground bounce]] on state transitions. Bus interface circuits only in this family. CMOS logic levels.<ref name=fairchild_74acq245/> |- ! style="text-align:left" | 74ACTQ | Advanced CMOS with "quiet" outputs | 5 V ±10% | 7.5 ns | 24 mA | −24 mA | 1989<ref name=fairchild_history/> | Fairchild's "Quiet Series" offering lower ringing and [[ground bounce]] on state transitions.<ref name=fairchild_74actq00/> TTL logic levels.<ref name=fairchild_74acq245/> |- ! style="text-align:left" | 74ABT{{efn|name=hbus}}{{efn|name=rout}} | Advanced BiCMOS | 5 V ±10% | 3.6 ns | 20 mA | −15 mA | 1991?<ref name=signetics_abt_1991/> | TTL logic levels.<ref name=nexperia_74abt00/> |- ! style="text-align:left" | 74LVCE | Low-Voltage CMOS | 1.4–5.5 V | 3.6 ns | 32 mA | −32 mA | 2010?<ref name=diodes_lvce/> | CMOS logic levels. 5 V tolerant inputs. Extended supply voltage range and higher speed compared to 74LVC.<ref name=diodes_lvce/> |- !colspan=8| Low-voltage CMOS and BiCMOS families{{efn|1=Parameters are shown for the 2-input NAND gate (74x00 or 74x1G00) at V<sub>cc</sub> = 3.3 V,T<sub>a</sub> = 25 °C, C<sub>L</sub> = 50 pF.}} |- ! style="text-align:left" | 74LVT{{efn|name=hbus}}{{efn|name=zbus|1=The letter "Z" when added to the family code (e.g. 74LVTZ) indicates a circuit where a high-impedance state of all outputs is guaranteed when the power supply voltage drops below a certain threshold.<ref name=ti_74lvtz244/><ref name=ti_74lvcz245/><ref name=fairchild_74lcxz16245/>}} | Low-Voltage BiCMOS | 2.7–3.6 V | 4.1 ns | 32 mA | −20 mA | 1992<ref name=ti_lvth_1999/>{{rp|1}} | TTL logic levels, 5 V tolerant inputs and outputs.<ref name=philips_74lvt00/> Note, original 1992 LVTs had bus-hold. However a 1996 redesign of LVT emphasized performance, so 1992 LVTs were renamed LVTH to denote the bus-hold feature explicitly in the device name. LVTH also added the [[high impedance]] during power up/down feature.<ref name="ti_lvth_1999" /> |- ! style="text-align:left" | 74LVQ | Low-Voltage Quiet CMOS | 2.0–3.6 V | 9.5 ns | 12 mA | −12 mA | 1992<ref name=natsemi_lv_1992/>{{rp|1–3}} | TTL logic levels. Guaranteed [[Reflected-wave switching|incident-wave switching]] for 75 Ω lines.<ref name=natsemi_lv_1992/>{{rp|1–3}} |- ! style="text-align:left" | 74LV{{efn|name=u04}} | Low-Voltage CMOS | 2.7–3.6 V | 18 ns | 6 mA | −6 mA | 1993?<ref name=ti_lv_1996/>{{rp|10–3}} | TTL logic levels.<ref name=ti_lv_1996/>{{rp|10–3}} |- ! style="text-align:left" | 74LVC{{efn|name=u04}}{{efn|name=hbus|1=The letter "H" when added to the family code (e.g. 74LVCH) indicates a circuit with a bus-hold feature. That is, if the input bus goes to a high-impendance or floating state then the outputs keep their state according to the last valid input state. This eliminates the need for [[pull-up resistor]]s or pull-down resistors. "H" can also be combined with "R"{{efn|name=rout}} (e.g. 74ALVCHR).<ref name=ti_cbtlv_1998/>{{rp|1-5, 4-19}}<ref name=ti_lv_1996/>{{rp|3-15, 8-103}}<ref name=ti_lvth_1999/><ref name=ti_74avch8t245/><ref name=ti_74alvth16245/><ref name=fairchild_74lcxh16244/><ref name=ti_74abth245/><ref name=ti_74auch245/><ref name=ti_gtlp_2001/>{{rp|3-3}}<ref name=ti_74axch8t245/><ref name=ti_74lxch8t245/> }}{{efn|name=rout|1=The letter "R" when added to the family code (e.g. 74LCXR) indicates a circuit with integrated resistors at the outputs in order to reduce [[Overshoot (signal)|overshoot]] and undershoot of the output signal.<ref name=ti_cbtlv_1998/>{{rp|1-5, 4-23}}<ref name=ti_lvc_1998/>{{rp|3–51}}<ref name=fairchild_74lcxr2245/><ref name=ti_lv_1996/>{{rp|3–53}}<ref name=ti_74abtr2245/> }}{{efn|name=zbus}} | Low-Voltage CMOS | 2.0–3.6 V | 6 ns | 24 mA | −24 mA | 1993?<ref name=ti_lv_1996/>{{rp|8-5}} | TTL logic levels, 5 V tolerant inputs.<ref name=ti_lv_1996/>{{rp|8-5}} |- ! style="text-align:left" | 74ALVC{{efn|name=hbus}}{{efn|name=rout}} | Advanced Low-Voltage CMOS | 1.65–3.6 V | 3.0 ns | 24 mA | −24 mA | 1994?<ref name=ti_lv_1996/>{{rp|3–21}} | 3.3 V tolerant inputs and outputs.<ref name="Nexperia-Family-74ALVC">{{cite web |title=ALVC - Advanced Low-Voltage CMOS ALVC(H) |url=https://www.nexperia.com/products/analog-logic-ics/logic/family/ALVC/ |publisher=Nexperia |access-date=2023-06-04}}</ref><ref name=nexperia_74alvc00/> |- ! style="text-align:left" | 74VCX | Advanced Low-Voltage CMOS | 1.20–3.6 V | 3.1 ns | 24 mA | −24 mA | 1997<ref name=fairchild_history/> | Fairchild's version of 74ALVC.<ref name="TI_2004_LRG"/>{{rp|6}} 3.3 V tolerant inputs and outputs.<ref name=fairchild_74vcx00/> |- ! style="text-align:left" | 74LCX{{efn|name=u04}}{{efn|name=hbus}}{{efn|name=rout}}{{efn|name=zbus}} | Low-Voltage High-Speed CMOS | 2.0–3.6 V | 4.3 ns | 24 mA | −24 mA | 1994<ref name=fairchild_history/> | Fairchild's version of 74LVC.<ref name="TI_2004_LRG"/>{{rp|6}} TTL logic levels. 5 V tolerant inputs and outputs.<ref name=natsemi_crossvolt_1994/><ref name=st_74lcx00/><ref name=toshiba_lvx_1994/> |- ! style="text-align:left" | 74LVX{{efn|name=u04}} | Low-Voltage High-Speed CMOS | 2.0–3.6 V | 9.7 ns | 4 mA | −4 mA | 1994?<ref name=toshiba_lvx_1994/> | TTL logic levels. 5 V tolerant inputs. Faster than 74VHC at low voltages.<ref name=toshiba_lvx_1994/> |- ! style="text-align:left" | 74AUP | Advanced Ultra-Low-Power | 0.80–3.6 V | 3.8 ns | 4 mA | −4 mA | 2004?<ref name=ti_74aup1g00/> | 3.3 V tolerant hysteresis inputs.<ref name="TI-Logic-Guide" /> |- ! style="text-align:left" | 74G | Gigahertz | 1.65–3.6 V | 1.5 ns | 12 mA | −12 mA | 2006<ref name=potato_press_2007/> | Speeds over 1 [[gigahertz]] with 5 V tolerant inputs.<ref name=potato_74g00/> |- !colspan=8|Very-low-voltage CMOS families |- ! style="text-align:left" | 74AUC{{efn|name=u04}}{{efn|name=hbus}} | Advanced Ultra-Low-Voltage CMOS | 0.80–2.7 V | 2.0 ns | 9 mA | −9 mA | 2002?<ref name=ti_74auc16245/> | 3.3 V tolerant inputs.<ref name=ti_74auc00/> |- !colspan=8| Limited families for special applications{{efn|1=There are no simple gates in these families. Parameters are for a transceiver (74x245, 74x16245, or similar).}} |- ! style="text-align:left" | 74SC | Standard CMOS | 5 V ±5% | 30 ns | 10 mA | −10 mA | 1981?<ref name=gte_g74sc245/> | Performance like Standard TTL at lower power consumption (intermediate step between 74C and 74HC). No simple gates in this family.<ref name=gte_g74sc245/><ref name=supertex_74sc245/> |- ! style="text-align:left" | 74FCT | Fast CMOS | 5 V ±5% | 7 ns | 64 mA | −15 mA | 1986?<ref name=idt_fct_1986/> | Manufactured in CMOS<ref name=idt_fct_1986/> or BiCMOS<ref name=ti_cd74fct245/> technology. Performance like 74F at lower power consumption. No simple gates in this family. |- ! style="text-align:left" | 74BCT | BiCMOS | 5 V ±10% | 6.6 ns | 64 mA | −15 mA | 1988?<ref name=ti_bct_1988/> | TTL logic levels. Bus interface circuits only in this family.<ref name=ti_bct_1988/> |- ! style="text-align:left" | 74FBT | Fast BiCMOS | 5 V ±10% | 4.1 ns | 64 mA | −24 mA | 1990?<ref name=idt_fbt_1990/>{{rp|6.59}} | Bus interface circuits only in this family.<ref name=idt_fbt_1990/>{{rp|6.59}} |- ! style="text-align:left" | 74FB | Futurebus | 5 V ±5% | 5 ns | 80 mA | – {{efn|name=oconly|B-side outputs are all open-collector in this family.}} | 1992?<ref name=ti_abt_1992/>{{rp|7-3}} | [[Futurebus]]+ interface circuits only in this family.<ref name=ti_abt_1992/>{{rp|7-3}} |- ! style="text-align:left" | 74GTL | [[Gunning transceiver logic]] | 5 V ±5% | 4 ns | 64 mA | −32 mA | 1993?<ref name=ti_abt_1994/>{{rp|12–17}} | Bus interface circuits only in this family.<ref name=ti_abt_1994/>{{rp|12–3}} |- ! style="text-align:left" | 74GTLP{{efn|name=hbus}} | [[Gunning transceiver logic]] Plus | 3.15–3.45 V | 7.5 ns | 50 mA | – {{efn|name=oconly}} | 1996<ref name=ti_gtlp_background/> | Bus interface circuits only in this family. Fairchild's improved version of 74GTL (higher bus speed, lower [[ground bounce]]).<ref name=ti_gtlp_background/><ref name=ti_gtlp_2001/>{{rp|3-3}} |- ! style="text-align:left" | 74CBT{{efn|name=hbus}}{{efn|name=rout}} | Crossbar Switch | 5 V ±10% | 0.25 ns | 64 mA | −15 mA | 1992?<ref name=ti_cbt_1993/>{{rp|5-3}} | FET bus switches only in this family.<ref name=ti_cbt_1993/>{{rp|5-3}} |- ! style="text-align:left" | 74FST | Crossbar Switch | 5 V ±5% | 0.25 ns | 30 mA | −15 mA | 1995?<ref name=idt_fst_1995/>{{rp|10.1}} | FET bus switches only in this family.<ref name=idt_fst_1995/>{{rp|10.1}} IDT's version of 74CBT.<ref name="TI_2004_LRG"/>{{rp|6}} |- ! style="text-align:left" | 74CBTLV | Crossbar Switch Low-Voltage | 2.3–3.6 V | 0.25 ns | 64 mA | −15 mA | 1997?<ref name=ti_cbtlv_1998/>{{rp|7–15}} | FET bus switches only in this family.<ref name=ti_cbtlv_1998/>{{rp|7–15}} |- ! style="text-align:left" | 74ALB | Advanced Low-Voltage BiCMOS | 3.0–3.6 V | 2.0 ns | 25 mA | −25 mA | 1996?<ref name=ti_lv_1996/>{{rp|2–3}} | Bus interface circuits only in this family.<ref name=ti_lv_1996/>{{rp|2–3}} |- ! style="text-align:left" | 74LPT | Low-Voltage CMOS | 2.7–3.6 V | 4.1 ns | 24 mA | −24 mA | 1996?<ref name=harris_lpt_1997/>{{rp|3–84}} | Bus interface circuits only in this family. 5 V tolerant inputs.<ref name=harris_lpt_1997/>{{rp|3–84}} |- ! style="text-align:left" | 74AVC{{efn|name=hbus}} | Advanced Very-Low-Voltage CMOS | 1.40–3.6 V | 1.7 ns | 12 mA | −12 mA | 1998?<ref name=ti_74avc16245/> | 3.3 V tolerant inputs. Bus interface circuits only in this family.<ref name=ti_74avc16245/> |- ! style="text-align:left" | 74ALVT{{efn|name=hbus}} | Advanced Low-Voltage [[BiCMOS]] | 2.3–3.6 V | 2.5 ns | 64 mA | −32 mA | 1999?<ref name=ti_alvt_1999/> | 5 V tolerant inputs and outputs.<ref name="Nexperia-Family-74ALVT">{{cite web |title=ALVT - Advanced Low-Voltage BiCMOS Technology (ALVT) |url=https://www.nexperia.com/products/analog-logic-ics/logic/family/ALVT/ |publisher=Nexperia |access-date=2023-06-04}}</ref><ref name="TI-Logic-Guide" /> Bus interface circuits only in this family. |- ! style="text-align:left" | 74AHCV | Advanced High-Speed CMOS | 1.8–5.5 V | 7.5 ns | 16 mA | −16 mA | 2016?<ref name=nexperia_74ahcv245/> | CMOS logic levels. 5 V tolerant inputs. Extended supply voltage range and higher speed compared to 74AHC.<ref name=nexperia_74ahcv245/> Bus interface circuits only in this family. See also 74LVCE. |- ! style="text-align:left" | 74AXC{{efn|name=hbus}} | Advanced Extremely-Low-Voltage CMOS | 0.65–3.6 V | 4 ns | 12 mA | −12 mA | 2018?<ref name=ti_74axch8t245/> | 3.3 V tolerant inputs. Bus interface circuits only in this family.<ref name=ti_74axc2t245/> |- ! style="text-align:left" | 74LXC{{efn|name=hbus}} | Low-Voltage CMOS | 1.1–5.5 V | 7 ns | 32 mA | −32 mA | 2019?<ref name=ti_74lxch8t245/> | Extended supply voltage range compared to 74LVC. Bus interface circuits only in this family. See also 74LVCE.<ref name=ti_74lxch8t245/><ref name=ti_lxc_overview/> |} {{notelist}} [[File:Niveaux logiques CMOS-TTL-LVTTL.png|thumb|Comparison of logic levels for various 7400 families]] Many parts in the CMOS HC, AC, AHC, and VHC families are also offered in "T" versions (HCT, ACT, AHCT and VHCT) which have input thresholds that are compatible with both TTL and 3.3 V CMOS signals. The non-T parts have conventional CMOS input thresholds, which are more restrictive than TTL thresholds. Typically, CMOS input thresholds require high-level signals to be at least 70% of Vcc and low-level signals to be at most 30% of Vcc. (TTL has the input high level above 2.0 V and the input low level below 0.8 V, so a TTL high-level signal could be in the forbidden middle range for 5 V CMOS.) The 74H family is the same basic design as the 7400 family with resistor values reduced. This reduced the typical [[propagation delay]] from 9 ns to 6 ns but increased the power consumption. The 74H family provided a number of unique devices for CPU designs in the 1970s. Many designers of military and aerospace equipment used this family over a long period and as they need exact replacements, this family is still produced by Lansdale Semiconductor.<ref name="LansdaleSemi">[http://www.lansdale.com Lansdale Semiconductor home page].</ref> The 74S family, using [[Schottky diode|Schottky]] circuitry, uses more power than the 74, but is faster. The 74LS family of ICs is a lower-power version of the 74S family, with slightly higher speed but lower power dissipation than the original 74 family; it became the most popular variant once it was widely available. Many 74LS ICs can be found in microcomputers and digital consumer electronics manufactured in the 1980s and early 1990s. The 74F family was introduced by [[Fairchild Semiconductor]] and adopted by other manufacturers; it is faster than the 74, 74LS and 74S families. Through the late 1980s and 1990s newer versions of this{{which|date=March 2019}} family were introduced to support the lower operating voltages used in newer [[Central processing unit|CPU]] devices. {| class="wikitable" style="margin: 1em auto 1em auto; text-align:center;" width="60%;" |+ Characteristics of selected 7400 series families (''V''{{sub|DD}} = 5 V)<ref>{{cite book |last1=Maini |first1=Anil |title=Digital Electronics: Principles, Devices and Applications |url=https://archive.org/details/digitalelectroni00main_995 |url-access=limited |date=2007 |publisher=John Wiley & Sons |isbn=978-0-470-03214-5 |page=[https://archive.org/details/digitalelectroni00main_995/page/n188 168]}}</ref> |- ! Parameter ! style="background: #ffdead;" | 74C ! style="background: #ffdead;" | 74HC ! style="background: #ffdead;" | 74AC ! style="background: #ffdead;" | 74HCT ! style="background: #ffdead;" | 74ACT ! Units |- ! ''V''{{sub|IH}} (min) | colspan="3" | 3.5 | colspan="2" | 2.0 | V |- ! ''V''{{sub|OH}} (min) | 4.5 | colspan="4" | 4.9 | V |- ! ''V''{{sub|IL}} (max) | 1.5 | 1.0 | 1.5 | colspan="2" | 0.8 | V |- ! ''V''{{sub|OL}} (max) | 0.5 | colspan="4" | 0.1 | V |- ! ''I''{{sub|IH}} (max) | colspan="5" | 1 | μA |- ! ''I''{{sub|IL}} (max) | colspan="5" | 1 | μA |- ! ''I''{{sub|OH}} (max) | 0.4 | 4.0 | 24 | 4.0 | 24 | mA |- ! ''I''{{sub|OL}} (max) | 0.4 | 4.0 | 24 | 4.0 | 24 | mA |- ! ''t''{{sub|P}} (max) | 50 | 8 | 4.7 | 8 | 4.7 | ns |} == Part numbering == [[File:74 Series Code.svg|thumb|Part numbering]] [[File:74HC595.jpg|thumb|[[Surface-mount technology|Surface-mount]] 74HC595 [[shift register]]s on a [[printed circuit board|PCB]]. This 74HC variant uses CMOS signaling voltage levels while the 74HCT595 variant uses TTL signalling levels.]] [[File:74HC595-HD.jpg|thumb|[[Die (integrated circuit)|Die]] of a 74HC595 8-bit [[shift register]]]] {{See also|List of 7400-series integrated circuits}} Part number schemes varied by manufacturer. The part numbers for 7400-series logic devices often use the following designators: * Often first, a two or three letter prefix, denoting the manufacturer and flow class of the device. These codes are no longer closely associated with a single manufacturer, for example, [[Fairchild Semiconductor]] manufactures parts with MM and DM prefixes, and no prefixes. Examples: ** SN: [[Texas Instruments]] using a commercial processing ** SNV: Texas Instruments using military processing ** M: [[STMicroelectronics|ST Microelectronics]] ** DM: [[National Semiconductor]] ** UT: [[Cobham plc|Cobham PLC]] ** SG: [[Sylvania Electric Products|Sylvania]] ** RD: [[RIFA AB]] * Two digits for temperature range. Examples: ** 54: military temperature range ** 64: short-lived historical series with intermediate "industrial" temperature range ** 74: commercial temperature range device * Zero to four letters denoting the logic subfamily. Examples: ** zero letters: basic bipolar TTL ** LS: low power Schottky ** HCT: High-speed CMOS compatible with TTL * Two or more arbitrarily assigned digits that identify the function of the device. There are [[List of 7400 series integrated circuits|hundreds of different devices]] in each family. * Additional suffix letters and numbers may be appended to denote the package type, quality grade, or other information, but this varies widely by manufacturer. For example, "SN5400N" signifies that the part is a 7400-series IC probably manufactured by [[Texas Instruments]] ("SN" originally meaning "Semiconductor Network"<ref>{{cite book |last1=Morris |first1=Robert L. |last2=Miller |first2=John R. |title=Designing with TTL Integrated Circuits |year=1971 |page=[https://archive.org/details/bitsavers_tiTexasInsSeriesMorrisDesigningWithTTLIntegratedCi_11927910/page/n25 15] |bibcode=1971dwti.book.....M |url=https://archive.org/details/bitsavers_tiTexasInsSeriesMorrisDesigningWithTTLIntegratedCi_11927910}}</ref>) using commercial processing, is of the military temperature rating ("54"), and is of the TTL family (absence of a family designator), its function being the ''quad 2-input NAND gate'' ("00") implemented in a plastic through-hole [[Dual in-line package|DIP]] package ("N"). Many [[logic family|logic families]] maintain a consistent use of the device numbers as an aid to designers. Often a part from a different 74x00 subfamily could be substituted ("[[pin-compatibility|drop-in replacement]]") in a circuit, with the same function and [[pin-out]] yet more appropriate characteristics for an application (perhaps speed or power consumption), which was a large part of the appeal of the 74C00 series over the competing [[4000 series|CD4000B]] series, for example. But there are a few exceptions where incompatibilities (mainly in [[pin-out]]) across the subfamilies occurred, such as: * some flat-pack devices (e.g. 7400W) and surface-mount devices, * some of the faster CMOS series (for example 74AC), * a few low-power TTL devices (e.g. 74L86, 74L9 and 74L95) have a different pin-out than the regular (or even 74LS) series part.<ref>{{cite book | last = The Engineering Staff | first = Texas Instruments | title = The TTL Data Book for Design Engineers | year = 1973 | edition = 1st | location = [[Dallas]], [[Texas]] }}</ref> * five versions of the 74x54 (4-wide AND-OR-INVERT gates [[Integrated Circuit|IC]]), namely 7454(N), 7454W, 74H54, 74L54W and 74L54N/74LS54, are different from each other in [[pin-out]] and/or function,<ref>{{cite book | last = The Engineering Staff | first = National Semiconductor Corporation | title = National Semiconductor TTL DATA BOOK | year = 1976 | pages = 1–14 | location = [[Santa Clara, California|Santa Clara]] [[California]] }}</ref> == Second sources from Europe and Eastern Bloc == [[File:K131la3.jpg|thumb|Soviet K131LA3, equivalent to 74H00]] [[File:Electronic component ttl.jpg|thumb|Czechoslovak MH74S00, Texas Instruments SN74S251N, East German DL004D (74LS04), Soviet K155LA13 (7438)]] [[File:CDB493E.jpg|thumb|Romanian CDB493E, equivalent to SN7493]] Some manufacturers, such as Mullard and Siemens, had [[Pin-compatibility|pin-compatible]] TTL parts, but with a completely different numbering scheme; however, data sheets identified the ''7400-compatible'' number as an aid to recognition. At the time the 7400 series was being made, some European manufacturers (that traditionally followed the [[Pro Electron#Digital logic families|Pro Electron]] naming convention), such as [[Philips]]/[[Mullard]], produced a series of TTL integrated circuits with part names beginning with FJ. Some examples of FJ series are: * FJH101 (=7430) single 8-input NAND gate, * FJH131 (=7400) quadruple 2-input NAND gate, * FJH181 (=7454N or J) 2+2+2+2 input AND-OR-NOT gate. The [[Soviet Union]] started manufacturing TTL ICs with 7400-series pinout in the late 1960s and early 1970s, such as the K155ЛA3, which was pin-compatible with the 7400 part available in the United States, except for using a metric spacing of 2.5 mm between pins instead of the {{convert|0.1|in|mm|2}} pin-to-pin spacing used in the west.<ref name=ussr>{{cite web | url = http://www.gaw.ru/html.cgi/txt/doc/marker/logic.htm | title = Relation between names of foreign and Russian logic chips | access-date = 26 March 2007 | language = ru | archive-url= https://web.archive.org/web/20070228032645/http://www.gaw.ru/html.cgi/txt/doc/marker/logic.htm | archive-date= 28 February 2007 | url-status= live}}</ref> Another peculiarity of the Soviet-made 7400 series was the packaging material used in the 1970s–1980s. Instead of the ubiquitous black resin, they had a brownish-green body colour with subtle swirl marks created during the moulding process. It was jokingly referred to in the Eastern Bloc electronics industry as the "elephant-dung packaging", due to its appearance.{{citation needed|date=August 2019}} The [[Soviet integrated circuit designation]] is different from the Western series: * the technology modifications were considered different series and were identified by different numbered prefixes – К155 series is equivalent to plain 74, К555 series is 74LS, К1533 is 74ALS, etc.; * the function of the unit is described with a two-letter code followed by a number: ** the first letter represents the functional group – logical, triggers, counters, multiplexers, etc.; ** the second letter shows the functional subgroup, making the distinction between logical NAND and NOR, D- and JK-triggers, decimal and binary counters, etc.; ** the number distinguishes variants with different number of inputs or different number of elements within a die – ЛА1/ЛА2/ЛА3 (LA1/LA2/LA3) are 2 four-input / 1 eight-input / 4 two-input NAND elements respectively (equivalent to 7420/7430/7400). Before July 1974 the two letters from the functional description were inserted after the first digit of the series. Examples: К1ЛБ551 and К155ЛА1 (7420), К1ТМ552 and К155ТМ2 (7474) are the same ICs made at different times. Clones of the 7400 series were also made in other [[Eastern Bloc]] countries:<ref name=ia6/> * [[Bulgaria]] (Mikroelektronika [[Botevgrad]]) used a designation somewhat similar to that of the Soviet Union, e.g. ''1ЛБ00ШМ'' (1LB00ShM) for a 74LS00. Some of the two-letter functional groups were borrowed from the Soviet designation, while others differed. Unlike the Soviet scheme, the two or three digit number after the functional group matched the western counterpart. The series followed at the end (i.e. ''ШМ'' for LS). Only the LS series is known to have been manufactured in Bulgaria.<ref>{{cite book |title=Техническа информация 1985 |trans-title=Technical information 1985 |publisher=NPSK Botevgrad |url=https://www.sandacite.bg/%D0%BD%D0%BE%D0%B2%D0%B0-%D0%BA%D0%BD%D0%B8%D0%B3%D0%B0-%D0%B4%D0%BD%D0%BF%D1%81%D0%BA-%D0%B1%D0%BE%D1%82%D0%B5%D0%B2%D0%B3%D1%80%D0%B0%D0%B4-%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA/ |language=bg |access-date=2017-11-11 }}</ref><ref name=ia50/>{{rp|pages=8–11}} * [[Czechoslovakia]] ([[Tesla (Czechoslovak company)|TESLA]]) used the 7400 numbering scheme with manufacturer prefix MH. Example: MH7400. Tesla also produced industrial grade (8400, −25 ° to 85 °C) and military grade (5400, −55 ° to 125 °C) ones. * [[Poland]] ([[:pl:CEMI|Unitra CEMI]]) used the 7400 numbering scheme with manufacturer prefixes UCA for the 5400 and 6400 series, as well as UCY for the 7400 series. Examples: UCA6400, UCY7400. Note that ICs with the prefix MCY74 correspond to the [[4000 series]] (e.g. MCY74002 corresponds to 4002 and not to 7402). * [[Hungary]] ([[Tungsram]], later Mikroelektronikai Vállalat / MEV) also used the 7400 numbering scheme, but with manufacturer suffix – 7400 is marked as 7400APC. * [[Electronics industry in the Socialist Republic of Romania|Romania (I.P.R.S.)]] used a trimmed 7400 numbering with the manufacturer prefix CDB (example: CDB4123E corresponds to 74123) for the 74 and 74H series, where the suffix ''H'' indicated the 74H series.<ref>{{cite book |title=Digital Integrated Circuits |publisher=I.P.R.S. Băneasa |place=Bucharest |date=1976 |url=http://yo3kxl.netxpert.ro/docs/cataloage_IPRS/Circuite%20Integrate%20Digitale%20-%20Catalog%20IPRS.pdf |access-date=2019-01-18 }}</ref> For the later 74LS series, the standard numbering was used.<ref>{{cite book |title=Full Line Condensed Catalog 1990 |publisher=I.P.R.S. Băneasa |place=Bucharest |date=1990 |url=http://yo3kxl.netxpert.ro/docs/cataloage_IPRS/FULL_LINE_CONDENSED_CATALOG%201990%20IPRS.pdf |access-date=2019-01-19 }}</ref> * [[East Germany]] ([[Halbleiterwerk Frankfurt (Oder)|HFO]]) also used trimmed 7400 numbering without manufacturer prefix or suffix. The prefix D (or E) designates digital IC, and not the manufacturer. Example: D174 is 7474. 74LS clones were designated by the prefix DL; e.g. DL000 = 74LS00. In later years East German made clones were also available with standard 74* numbers, usually for export.<ref name=ddr>[https://www-user.tu-chemnitz.de/~heha/basteln/Konsumg%C3%BCter/DDR-Halbleiter/ GDR semiconductor datasheet comparison] {{in lang|de}}.</ref> A number of different technologies were available from the Soviet Union,<ref name=ussr/><ref>{{cite book | first=Л. И. | last=Ниссельсон | title=Цифровые и аналоговые интегральные микросхемы | publisher=Радио и связь | year=1989 | language=ru | isbn=5256002597 }}</ref> <ref name=museum>{{cite web | title=Активные элементы | publisher=Музей электронных раритетов | url=http://www.155la3.ru/aktiv.htm | language=ru | access-date=24 March 2016 }}</ref> <ref name=kozak>{{cite web | first=Виктор Романович | last=Козак | title=Номенклатура и аналоги отечественных микросхем | url=http://www.inp.nsk.su/~kozak/adv/advh0.htm | language=ru | date=24 May 2014 | access-date=24 March 2016 }}</ref> <ref name=ia6>{{cite book | first=Gerd | last=Hillebrand | title=Importbauelemente Integrierte Schaltungen | trans-title=Imported integrated circuits | series=Information Applikation Mikroelektronik | volume=6 | publisher=Kammer der Technik, Vorstand des Bezirksverbandes Frankfurt (Oder) | date=30 June 1980 | url=http://datasheet.datasheetarchive.com/originals/scans/Scans-048/DSAGER00098.pdf | access-date=2 November 2016 | language=de }}</ref> Czechoslovakia,<ref>{{cite web | url=http://www.teslakatalog.cz/io.php | title=Integrované obvody | language=cs | access-date=17 March 2016 }}</ref> <ref name=ia50>{{cite book | first=Gerd | last=Hillebrand | title=RGW-Typenübersicht + Vergleich — Teil 2: RGW | trans-title=Comecon type overview + comparison — Part 2: Comecon | series=Information Applikation Mikroelektronik | volume=50 | publisher=Kammer der Technik, Vorstand des Bezirksverbandes Frankfurt (Oder) | date=12 September 1988 | url=http://datasheet.datasheetarchive.com/originals/scans/Scans-048/DSAGER000142.pdf | access-date=11 November 2017 | language=de }}</ref> Poland,<ref name=ia6/><ref name=ia50/> and East Germany.<ref name=ddr/> The 8400 series in the table below indicates an industrial temperature range from −25 °C to +85 °C (as opposed to −40 °C to +85 °C for the 6400 series). [[File:YUNTEN.gif|thumb|A 4-bit, 2-register, 6-instruction computer made entirely of 74-series chips on a [[solderless breadboard]]]] {| class="wikitable" |+ Prefixes of Eastern European series |- ! ! colspan="2" | Soviet Union ! colspan="3" | Czechoslovakia ! colspan="3" | Poland ! colspan="3" | East Germany |- ! ! 5400 ! style="text-align:left" | 7400 ! 5400 ! style="text-align:left" | 7400 ! 8400 ! 5400 ! 6400 ! style="text-align:left" | 7400 ! 6400 ! style="text-align:left" | 7400 ! 8400 |- ! style="text-align:left" | 74 | 133 | К155 | MH54 | MH74 | MH84 | UCA54 | UCA64 | UCY74 | | D1 | E1 |- ! style="text-align:left" | 74L | 134,{{efn|The pin assignment of the 134 series mostly follows Texas Instruments' original flat-pack series, i.e. ground on pin 11 and power on pin 4.}} 136 | КР134, К158 | | | | | | | | | |- ! style="text-align:left" | 74H | 130 | К131 | | | | | UCA64H | UCY74H | | D2 | E2 |- ! style="text-align:left" | 74S | 530 | КР531 | MH54S | MH74S | MH84S | | | UCY74S | | DS | |- ! style="text-align:left" | 74LS | 533 | К555 | | | | | | UCY74LS | | DL...D | DL...DG |- ! style="text-align:left" | 74AS | 1530 | КР1530 | | | | | | | | | |- ! style="text-align:left" | 74ALS | 1533 | КР1533 | MH54ALS | MH74ALS | | | | | | | |- ! style="text-align:left" | 74F | 1531 | КР1531 | | | | | | | | | |- ! style="text-align:left" | 74HC | 1564 | КР1564 | | | | | | | | | |- ! style="text-align:left" | 74HCT | 5564 | | | | | | | | U74HCT...DK | | |- ! style="text-align:left" | 74AC | 1554 | КР1554 | | | | | | | | | |- ! style="text-align:left" | 74ACT | 1594 | КР1594 | | | | | | | | | |- ! style="text-align:left" | 74LVC | 5574 | | | | | | | | | | |- ! style="text-align:left" | 74VHC | 5584 | | | | | | | | | | |- |} {{notelist}} Around 1990 the production of standard logic ceased in all Eastern European countries except the Soviet Union and later [[Russia]] and [[Belarus]]. As of 2016, the series 133, К155, 1533, КР1533, 1554, 1594, and 5584 were in production at "Integral" in Belarus,<ref name=integral>{{cite web | title=Интегральные микросхемы | trans-title=Integrated circuits | publisher=OAO "Integral" | place=Minsk | url=http://www.integral.by/ru/products/integrated-circuits | language=ru | access-date=24 May 2016 }}</ref> as well as the series 130 and 530 at "NZPP-KBR",<ref name=nzpp-kbr>{{cite web | title=Продукция | trans-title=Products | publisher=OAO "NZPP-KBR" (former "Elkor") | place=Nalchik | url=http://www.nzpp-kbr.ru/index.php?Page=page_212 | language=ru | access-date=5 June 2016 }}</ref> 134 and 5574 at "VZPP",<ref name=vzpp>{{cite web | title=Каталог изделий | trans-title=Product catalog | publisher=OAO "VZPP-S" | place=Voronezh | url=http://www.vzpp-s.ru/production/catalog.pdf | language=ru | access-date=30 May 2016 }}</ref> 533 at [[Svetlana (company)|"Svetlana"]],<ref name=svetlana>{{cite web | title=Каталог продукции | trans-title=Product catalog | publisher=ZAO Svetlana Semiconductors | place=Saint Petersburg | url=http://svetpol.ru/produktsiya/ | language=ru | access-date=30 May 2016 | archive-date=6 October 2017 | archive-url=https://archive.today/20171006102615/http://svetpol.ru/produktsiya/ | url-status=dead }}</ref> 1564, К1564, КР1564 at "NZPP",<ref name=nzpp>{{cite web | title=ПРОДУКЦИЯ | trans-title=Products | publisher=AO NZPP | place=Novosibirsk | url=http://www.nzpp.ru/product/ | language=ru | access-date=31 May 2016 }}</ref> 1564, К1564 at "Voshod",<ref name=voskhod>{{cite web | title=Микросхемы | trans-title=Integrated circuits | publisher=AO "Voshod" | place=Kaluga | url=http://www.voshod-krlz.ru/catalog/2 | language=ru | access-date=8 June 2016 }}</ref> 1564 at "Exiton",<ref name=exiton>{{cite web | title=Интегральные микросхемы | trans-title=Integrated circuits | publisher=OAO "Exiton" | place=Moscow | url=https://okbexiton.ru/pr_ic.php | archive-url=https://web.archive.org/web/20220317104417/https://okbexiton.ru/pr_ic.php | archive-date=17 March 2022 | language=ru | access-date=30 September 2022 }}</ref> and 133, 530, 533, 1533 at [[Mikron Group|"Mikron"]] in Russia.<ref name=mikron2020>{{cite web | title=Микросхемы ПАО Микрон 2020 | trans-title=Integrated Circuits PAO Mikron 2020 | publisher=Mikron | url=https://413100.selcdn.ru/upload-153a6b408c99eadfc8d7d3c5576481d8/iblock/05d/05d7224966d072bbbc986716f3e32ecc/katalog+VPK_2020.pdf | language=ru | access-date=16 February 2021 }}</ref> The Russian company [[Angstrem (company)|Angstrem]] manufactures 54HC circuits as the 5514БЦ1 series, 54AC as the 5514БЦ2 series, and 54LVC as the 5524БЦ2 series.<ref name=angstrem>{{cite web | title=Каталог продукции | trans-title=Product catalog | publisher=Angstrem | place=Zelenograd | url=https://www.angstrem.ru/pdf/2022/%D0%9A%D0%B0%D1%82%D0%B0%D0%BB%D0%BE%D0%B3%20%C2%AB%D0%90%D0%BD%D0%B3%D1%81%D1%82%D1%80%D0%B5%D0%BC%C2%BB,%20%D0%BF%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%86%D0%B8%D1%8F%202022.pdf | language=ru | date=2022 | access-date=22 September 2022 }}</ref> As of 2024, the 133, 136, and 1533 series are in production at Kvazar Kyiv in Ukraine.<ref name=kvazar>{{cite web | title=ПРОДУКЦІЯ ТА ЦІНИ | trans-title=Products and prices | publisher=DP "Kvazar-IS" | place=Kyiv | url=http://www.kwazar-is.kiev.ua/nomen.htm | language=uk | date=1 October 2024 | access-date=9 March 2025 }}</ref> ==See also== {{Div col}} * [[Electronic component]] * [[Logic gate]], [[Logic family]] * [[List of 7400-series integrated circuits]] * [[4000-series integrated circuits]] * [[List of 4000-series integrated circuits]] * [[Linear integrated circuit]] * [[List of linear integrated circuits]] * [[List of LM-series integrated circuits]] * [[Push–pull output]] * [[Open collector|Open-collector/drain output]] * [[Three-state logic|Three-state output]] * [[Schmitt trigger|Schmitt trigger input]] * [[Programmable logic device]] * [[Pin compatibility]] {{Div col end}} ==References== {{Reflist|refs= <ref name=ti_as_als_1984>{{cite book |title=The TTL Data Book Volume 3|publisher=Texas Instruments |date=1984 |url=https://archive.org/details/bitsavers_tidataBookVol3_25840031}}</ref> <ref name=ti_std_1985>{{cite book |title=The TTL Data Book Volume 2|publisher=Texas Instruments |date=1985 |url=https://archive.org/details/bitsavers_tidataBookVol2_45945352}}</ref> <ref name=ti_ttl_data_1981>{{cite book |title=The TTL Data Book for Design Engineers, 2nd Edition |publisher=Texas Instruments |date=1981 |url=https://archive.org/details/bitsavers_tidataBookesignEngineers2ed1981_29954976}}</ref> <ref name=ti_ahc_1996>{{cite book |title=AHC/AHCT, HC/HCT, and LV CMOS Logic |publisher=Texas Instruments |date=1996 |url=https://archive.org/details/bitsavers_tidataBookCTHCHCTandLVCMOSLogicDataBook_71546580}}</ref> <ref name=ti_abt_1992>{{cite book |title=ABT Advanced BiCMOS Technology |publisher=Texas Instruments |date=1992 |url=https://archive.org/details/bitsavers_tidataBookiCMOSTechnologyDataBook_40217042}}</ref> <ref name=ti_abt_1994>{{cite book |title=ABT Advanced BiCMOS Technology |publisher=Texas Instruments |date=1994 |url=http://www.bitsavers.org/components/ti/_dataBooks/1994_TI_ABT_ABT_Advanced_BiCMOS_Technology_Data_Book.pdf}}</ref> <ref name=ti_cbt_1993>{{cite book |title=Advanced CMOS Logic Data Book |publisher=Texas Instruments |date=1993 |url=https://archive.org/details/bitsavers_tidataBookLogicDataBook_55735151}}</ref> <ref name=ti_bct_1988>{{cite book |title=BiCMOS Bus Interface Logic |publisher=Texas Instruments |date=1988 |url=https://archive.org/details/bitsavers_tidataBookerfaceLogicDataBook_4501982}}</ref> <ref name=ti_lv_1996>{{cite book |title=Low-Voltage Logic |publisher=Texas Instruments |date=1996 |url=https://www.bitsavers.org/components/ti/_dataBooks/1996_TI_Low-Voltage_Logic_Data_Book.pdf}}</ref> <ref name=ti_lvc_1998>{{cite book |title=LVC and LV Low-Voltage CMOS Logic Data Book |publisher=Texas Instruments |date=1998 |url=https://archive.org/details/TexasInstrumentsLVCAndLVDataBook1998}}</ref> <ref name=ti_cd74fct245>{{cite web |title=CD74FCT245 BiCMOS Octal Bus Transceiver With 3-State Outputs |publisher=Texas Instruments |date=2000 |url=https://www.ti.com/lit/ds/symlink/cd74fct245.pdf}}</ref> <ref name=ti_74auc00>{{cite web |title=SN74AUC00 Quadruple 2-Input Positive-NAND Gate |url=https://www.ti.com/lit/gpn/SN74AUC00 |publisher=Texas Instruments |date=2005 |access-date=2023-03-30}}</ref> <ref name=ti_74aup1g00>{{cite web |title=SN74AUP1G00 Low-Power Single 2-Input Positive-NAND Gate |url=https://www.ti.com/lit/gpn/SN74AUP1G00 |publisher=Texas Instruments |date=2016 |access-date=2023-04-15}}</ref> <ref name=ti_74hcs00>{{cite web |title=SN74HCS00 Quadruple 2-Input Positive-NAND Gate with Schmitt-Trigger Inputs|url=https://www.ti.com/lit/gpn/SN74HCS00 |publisher=Texas Instruments |date=2021 |access-date=2023-04-14}}</ref> <ref name=ti_74auc16245>{{cite web |title=SN74AUC16245 16-Bit Bus Transceiver with 3-State Outputs |url=https://www.ti.com/lit/gpn/SN74AUC16245 |publisher=Texas Instruments |date=2002 |access-date=2023-03-30}}</ref> <ref name=ti_74avc16245>{{cite web |title=SN74AVC16245 16-Bit Bus Transceiver with 3-State Outputs |url=https://www.ti.com/lit/gpn/SN74AVC16245 |publisher=Texas Instruments |date=1998 |access-date=2023-04-13}}</ref> <ref name=ti_74avch8t245>{{cite web |title=SN74AVCH8T245 8-Bit Dual-Supply Bus Transceiver With Configurable Level-Shifting, Voltage Translation, and 3-State Outputs |url=https://www.ti.com/lit/gpn/sn74avch8t245 |publisher=Texas Instruments |date=2016 |access-date=2023-04-30}}</ref> <ref name=ti_74axc2t245>{{cite web |title=SN74AXC2T245 2-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation and Tri-State Outputs |url=https://www.ti.com/lit/gpn/SN74AXC2T245 |publisher=Texas Instruments |date=2020 |access-date=2023-04-15}}</ref> <ref name=ti_74axch8t245>{{cite web |title=SN74AXCH8T245 8-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation, Tri-State Outputs, and Bus-Hold Circuitry |url=https://www.ti.com/lit/gpn/SN74AXCH8T245 |publisher=Texas Instruments |date=2019 |access-date=2023-07-19}}</ref> <ref name=ti_74lxch8t245>{{cite web |title=SN74LXCH8T245 8-bit Translating Transceiver with Configurable Level Shifting |url=https://www.ti.com/lit/gpn/SN74LXCH8T245 |publisher=Texas Instruments |date=2021 |access-date=2023-07-20}}</ref> <ref name=ti_lxc_overview>{{cite web |title=Robust Voltage Level Translation with the LXC Family |url=https://www.ti.com/lit/an/scea097/scea097.pdf |publisher=Texas Instruments |date=2021 |access-date=2023-07-20}}</ref> <ref name=ti_74alvth16245>{{cite web |title=SN54ALVTH16245, SN74ALVTH16245 2.5-V/3.3-V 16-Bit Bus Transceivers With 3-State Outputs |publisher=Texas Instruments |date=2002 |url=https://www.ti.com/lit/gpn/SN74ALVTH16245 |access-date=2023-04-30}}</ref> <ref name=ti_74abth245>{{cite web |title=SN54ABTH245, SN74ABTH245 Octal Bus Transceivers With 3-State Outputs |publisher=Texas Instruments |date=1996 |url=https://www.ti.com/lit/gpn/SN54ABTH245 |access-date=2023-06-05}}</ref> <ref name=ti_74abtr2245>{{cite web |title=SN54ABTR2245, SN74ABTR2245 Octal Transceivers and Line/Memory Drivers With 3-State Outputs |publisher=Texas Instruments |date=1997 |url=https://www.ti.com/lit/gpn/SN74ABTR2245 |access-date=2023-06-07}}</ref> <ref name=ti_74auch245>{{cite web |title=SN74AUCH245 Octal Bus Transceiver With 3-State Outputs |publisher=Texas Instruments |date=2003 |url=https://www.ti.com/lit/gpn/SN74AUCH245 |access-date=2023-06-07}}</ref> <ref name=ti_74aucu04>{{cite web |title=SN74AUCU04 Hex Inverter |publisher=Texas Instruments |date=2003 |url=https://www.ti.com/lit/gpn/SN74AUCU04 |access-date=2023-06-07}}</ref> <ref name=ti_cbtlv_1998>{{cite book |title=CBT (5-V) and CBTLV (3.3-V) Bus Switches |publisher=Texas Instruments |date=1998 |url=https://archive.org/details/texasinstruments_scdd001b}}</ref> <ref name=ti_alvt_1999>{{cite book |title=Advanced Low-Voltage Technology |publisher=Texas Instruments |date=1999 |url=https://www.ti.com/lit/an/scea015/scea015.pdf}}</ref> <ref name=ti_lvth_1999>{{cite book |title=LVT-to-LVTH Conversion |publisher=Texas Instruments |date=1999 |url=https://www.ti.com/lit/an/scea010/scea010.pdf}}</ref> <ref name=ti_74lvtz244>{{cite web |title=SN54LVTZ244, SN74LVTZ244 3.3-V ABT Octal Buffers/Drivers With 3-State Outputs |publisher=Texas Instruments |date=1995 |url=https://www.ti.com/lit/gpn/SN74LVTZ244 |access-date=2023-07-21}}</ref> <ref name=ti_74lvcz245>{{cite web |title=SN74LVCZ245A Octal bus transceiver with 3-state outputs |publisher=Texas Instruments |date=2003 |url=https://www.ti.com/lit/gpn/SN74LVCZ245A |access-date=2023-07-21}}</ref> <ref name=ti_gtlp_background>{{cite web |title=GTLP Signal Level Background Information |publisher=Texas Instruments |date=2000 |url=https://www.ti.com/pdfs/logic/gtlpbackgrounder.pdf |access-date=2023-07-17}}</ref> <ref name=ti_gtlp_2001>{{cite book |title=GTL/GTLP Logic High-Performance Backplane Drivers Data Book |publisher=Texas Instruments |date=2001 |url=https://www.ti.com/lit/pdf/sced004}}</ref> <ref name=fairchild_history>{{cite web |title=History & Heritage |publisher=Fairchild |url=https://www.fairchildsemi.com/about/history-heritage/ |archive-url=https://web.archive.org/web/20150908100532/https://www.fairchildsemi.com/about/history-heritage/ |archive-date=2015-09-08}}</ref> <ref name=fairchild_fast_1980>{{cite book |title=FAST - Fairchild Advanced Schottky TTL |publisher=Fairchild |date=1980 |url=https://archive.org/details/bitsavers_fairchilddldFASTDataBook_10052460}}</ref> <ref name=fairchild_fact_1985>{{cite book |title=Fairchild Advanced CMOS Technology Logic Data Book |publisher=Fairchild |date=1985 |url=https://archive.org/details/bitsavers_fairchilddldFACTLogicDataBook_6143977}}</ref> <ref name=fairchild_74vhc00>{{cite web |title=74VHC00 Quad 2-Input NAND Gate |publisher=Fairchild |date=2005 |url=https://pdf1.alldatasheet.com/datasheet-pdf/view/50632/FAIRCHILD/74VHC00.html |access-date=2023-03-21}}</ref> <ref name=fairchild_74acq245>{{cite web |title=74ACQ245 • 74ACTQ245 Quiet Series Octal Bidirectional Transceiver with 3-STATE Inputs/Outputs |publisher=Fairchild |date=1999 |url=https://pdf.datasheetcatalog.com/datasheet/fairchild/74ACQ245.pdf |access-date=2023-03-31}}</ref> <ref name=fairchild_74actq00>{{cite web |title=74ACTQ00 Quiet Series Quad 2-Input NAND Gate |publisher=Fairchild |date=1999 |url=https://z3d9b7u8.stackpathcdn.com/pdf-down/7/4/A/74ACTQ00_FairchildSemiconductor.pdf |archive-url=https://web.archive.org/web/20230331135831/https://z3d9b7u8.stackpathcdn.com/pdf-down/7/4/A/74ACTQ00_FairchildSemiconductor.pdf |archive-date=2023-03-31}}</ref> <ref name=fairchild_74vcx00>{{cite web |title=74VCX00 - Low Voltage Quad 2-Input NAND Gate with 3.6V Tolerant Inputs and Outputs |publisher=Fairchild |date=2013 |url=https://www.onsemi.com/download/data-sheet/pdf/74vcx00-d.pdf |access-date=2023-04-19}}</ref> <ref name=fairchild_74lcxh16244>{{cite web |title=74LCXH16244 - Low Voltage 16-Bit Buffer/Line Driver with Bushold |date=2005 |publisher=Fairchild |url=https://www.onsemi.com/download/data-sheet/pdf/74lcxh16244-d.pdf |access-date=2023-05-03}}</ref> <ref name=fairchild_74lcxr2245>{{cite web |title=74LCXR2245 Low Voltage Bidirectional Transceiver with 5V Tolerant Inputs and Outputs and 26Ω Series Resistors on Both A and B Ports |date=2008 |publisher=Fairchild |url=https://www.onsemi.com/download/data-sheet/pdf/74lcxr2245-d.pdf |access-date=2023-05-03}}</ref> <ref name=fairchild_74lcxz16245>{{cite web |title=74LCXZ16245 Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs and Outputs |publisher=Fairchild |url=https://www.onsemi.com/download/data-sheet/pdf/74lcxz16245-d.pdf |access-date=2023-07-21}}</ref> <ref name=natsemi_cmos_1975>{{cite book |title=CMOS Integrated Circuits |publisher=National Semiconductor |date=1975 |url=https://archive.org/details/bitsavers_nationaldaCMOSIntegratedCircuits_16413029}}</ref> <ref name=natsemi_74hc_1983>{{cite book |title=MM54HC/74HC High Speed microCMOS Logic Family Databook |publisher=National Semiconductor |date=1983 |url=https://archive.org/details/bitsavers_nationalda74HCDatabook_36362852}}</ref> <ref name=natsemi_lv_1992>{{cite book |title=Low Voltage Databook |publisher=National Semiconductor |date=1992 |url=http://bitsavers.informatik.uni-stuttgart.de/components/national/_dataBooks/1992_400038_National_Low_Voltage_Databook.pdf}}</ref> <ref name=natsemi_crossvolt_1994>{{cite book |title=CROSSVOLT Low Voltage Logic Series |publisher=National Semiconductor |date=1994 |url=https://archive.org/details/bitsavers_nationaldaCROSSVOLTLowVoltageLogicSeriesDatabook_18426235}}</ref> <ref name=natsemi_74vhct00>{{cite web |title=74VHC00 * 74VHCT00 Quad 2-Input NAND Gate |publisher=National Semiconductor |date=1995 |url=https://pdf.datasheetcatalog.com/datasheet/nationalsemiconductor/DS011504.PDF |access-date=2023-03-21}}</ref> <ref name=toshiba_cmos_1990>{{cite book |title=C<sup>2</sup>MOS Logic TC74AC/ACT Series TC74HC/HCT Series |publisher=Toshiba |date=1990 |url=https://archive.org/details/bitsavers_toshibadatMOSLogic_71343239}}</ref> <ref name=nexperia_74abt00>{{cite web |title=74ABT00 |publisher=Nexperia |date=2020 |url=https://assets.nexperia.com/documents/data-sheet/74ABT00.pdf |access-date=2023-03-22}}</ref> <ref name=nexperia_74alvc00>{{cite web |title=74ALVC00 |publisher=Nexperia |date=2021 |url=https://assets.nexperia.com/documents/data-sheet/74ALVC00.pdf |access-date=2023-03-29}}</ref> <ref name=nexperia_74ahcv245>{{cite web |title=74AHCV245A |publisher=Nexperia |date=2016 |url=https://assets.nexperia.com/documents/data-sheet/74AHCV245A.pdf |access-date=2023-06-03}}</ref> <ref name=philips_74lvt00>{{cite web |title=74LVT00 |publisher=Philips |date=1996 |url=https://pdf1.alldatasheet.com/datasheet-pdf/view/15813/PHILIPS/74LVT00.html |access-date=2023-03-22}}</ref> <ref name=signetics_abt_1991>{{cite book |title=ABT MULTIBYTE Advanced BiCMOS Bus Interface Logic |publisher=Signetics |date=1991 |url=http://bitsavers.org/components/signetics/_dataBooks/1991_Signetics_IC23_ABT_MULTIBYTE_Advanced_BiCMOS_Bus_Interface_Logic.pdf}}</ref> <ref name=st_74lcx00>{{cite web |title=74LCX00 |publisher=STMicroelectronics |date=2012 |url=https://www.st.com/resource/en/datasheet/74lcx00.pdf |access-date=2023-03-24}}</ref> <ref name=st_74vhcu04>{{cite web |title=74VHCU04 |publisher=STMicroelectronics |date=2004 |url=https://www.st.com/resource/en/datasheet/74vhcu04.pdf |access-date=2023-04-21}}</ref> <ref name=st_74lcxu04>{{cite web |title=74LCXU04 |publisher=STMicroelectronics |date=2006 |url=https://www.mouser.com/datasheet/2/389/CD00002106-96321.pdf |access-date=2023-04-21}}</ref> <ref name=st_74lvxu04>{{cite web |title=74LVXU04 |publisher=STMicroelectronics |date=2004 |url=https://www.st.com/resource/en/datasheet/74lvxu04.pdf |access-date=2023-04-21}}</ref> <ref name=diodes_74ahcu04>{{cite web |title=74AHCU04 |publisher=Diodes Inc. |date=2013 |url=https://www.diodes.com/assets/Datasheets/74AHCU04.pdf |access-date=2023-05-02}}</ref> <ref name=diodes_lvce>{{cite web |title=Logic Master Table LVCE Family |date=18 August 2022 |publisher=Diodes Inc. |url=https://www.diodes.com/products/logic-and-voltage-translation/logic/logic-master-table/#collection-9700=~(Family~(~'LVCE)) |access-date=2023-05-02}}</ref> <ref name=idt_fct_1986>{{cite book |title=High Performance CMOS Data Book |publisher=IDT |date=1986 |url=https://archive.org/details/bitsavers_idtdataBoomanceCMOSDataBook_52220630}}</ref> <ref name=idt_fbt_1990>{{cite book |title=1990-91 Logic Data Book |publisher=IDT |date=1990 |url=http://www.bitsavers.org/components/idt/_dataBooks/1990_IDT_Logic_Data_Book.pdf}}</ref> <ref name=idt_fst_1995>{{cite book |title=High Performance Logic Data Book |publisher=IDT |date=1995 |url=https://archive.org/details/bitsavers_idtdataBoomanceLogicDataBook_51362967}}</ref> <ref name=gte_g74sc245>{{cite web |title=GTE G74SC245 G74SC545 |publisher=GTE Microcircuits |date=1981 |url=https://www.datasheetarchive.com/?q=g74sc245p |access-date=2024-04-27}}</ref> <ref name=supertex_74sc245>{{cite web |title=Supertex inc. HCT/SC245 |publisher=Supertex inc. |url=https://www.datasheetarchive.com/?q=74sc245p |access-date=2024-04-27}}</ref> <ref name=harris_lpt_1997>{{cite book |title=LPT/FCT CMOS Logic From Harris |publisher=Harris |date=1997 |url=https://archive.org/details/bitsavers_harrisdataCTLogic_25505286}}</ref> <ref name=toshiba_lvx_1994>{{cite book |title=Low Voltage C<sup>2</sup>MOS Logic IC |publisher=Toshiba |date=1994 |url=http://www.bitsavers.org/components/toshiba/_dataBook/1994_Toshiba_Low_Voltage_CMOS_Logic.pdf}}</ref> <ref name=samsung_hctls_1988>{{cite book |title=High Performance CMOS Logic Data Book |publisher=Samsung |date=1988 |url=https://archive.org/details/bitsavers_samsungdatghPerformanceCMOSLogicDataBook_50512171}}</ref> <ref name=potato_press_2007>{{cite web |title=Press Room |url=http://potatosemi.com/2007/press.html |archive-url=https://web.archive.org/web/20080201041441if_/http://potatosemi.com/2007/press.html |archive-date=2008-02-01 |publisher=Potato Semiconductor}}</ref> <ref name=potato_74g00>{{cite web |title=PO54G00A, PO74G00A |publisher=Potato Semiconductor |url=http://www.potatosemi.com/potatosemiweb/datasheet/PO74G00A.pdf |access-date=2023-04-15}}</ref> <ref name="TI-Logic-Guide">{{cite web |title=Logic Guide |url=https://www.ti.com/lit/sg/sdyu001ab/sdyu001ab.pdf |publisher=[[Texas Instruments|TI]]}}</ref> <ref name="kuehn1986">{{cite book |title=Handbuch TTL- und CMOS-Schaltkreise |trans-title=Handbook of TTL and CMOS circuits |language=de |author=Eberhard Kühn |date=1986 |publisher=Verlag Technik |place=Berlin |oclc=876464464}}</ref> }} ==Further reading== ;Books * ''50 Circuits Using 7400 Series IC's''; 1st Ed; R.N. Soar; Bernard Babani Publishing; 76 pages; 1979; {{ISBN|0900162775}}. <small>[https://worldradiohistory.com/UK/Bernards-And-Babani/Bernards/Babani-58-50-Circuits-Using-7400-ICs.pdf ''(archive)'']</small> * ''TTL Cookbook''; 1st Ed; [[Don Lancaster]]; Sams Publishing; 412 pages; 1974; {{ISBN|978-0672210358}}. <small>[https://web.archive.org/web/20190311005416/https://www.tinaja.com/ebooks/TTLCB1.pdf ''(archive)'']</small> * ''Designing with TTL Integrated Circuits''; 1st Ed; Robert Morris, John Miller; Texas Instruments and McGraw-Hill; 322 pages; 1971; {{ISBN|978-0070637450}}. <small>[https://archive.org/details/bitsavers_tiTexasInsSeriesMorrisDesigningWithTTLIntegratedCi_11927910 ''(archive)'']</small> ;App Notes * [https://www.ti.com/lit/SZZA036 ''Understanding and Interpreting Standard-Logic Data Sheets'']; Stephen Nolan, Jose Soltero, Shreyas Rao; Texas Instruments; 60 pages; 2016. * [https://www.onsemi.com/pub/Collateral/AN-319.pdf ''Comparison of 74HC / 74S / 74LS / 74ALS Logic'']; Fairchild; 6 pages, 1983. * [https://www.onsemi.com/pub/Collateral/AN-314.pdf ''Interfacing to 74HC Logic'']; Fairchild; 10 pages; 1998. * [https://www.ti.com/lit/ml/scla013d/scla013d.pdf ''74AHC / 74AHCT Designer's Guide'']; TI; 53pages; 1998. Compares 74HC / 74AHC / 74AC (CMOS I/O) and 74HCT / 74AHCT / 74ACT (TTL I/O). ;Fairchild Semiconductor / ON Semiconductor * Historical Data Books: [https://archive.org/details/bitsavers_fairchilddldTTLDataBook_39509923 ''TTL'' (1978, 752 pages)], [https://archive.org/details/bitsavers_fairchilddldFASTDataBook_20099339 ''FAST'' (1981, 349 pages)] * [https://web.archive.org/web/20170629224843/https://www.fairchildsemi.com/collateral/Logic-Selection-Guide.pdf ''Logic Selection Guide'' (2008, 12 pages)] ;Nexperia / NXP Semiconductor * [https://assets.nexperia.com/documents/selection-guide/Nexperia_Selection_guide_2020.pdf ''Logic Selection Guide'' (2020, 234 pages)] * [https://assets.nexperia.com/documents/brochure/Nexperia_LOGIC_Handbook_201029.pdf ''Logic Application Handbook Design Engineer's Guide''' (2021, 157 pages)] * [https://assets.nexperia.com/documents/brochure/Nexperia_document_guide_Logic_translators.pdf ''Logic Translators''' (2021, 62 pages)] ;Texas Instruments / National Semiconductor * Historical Catalog: [https://archive.org/details/bitsavers_tidataBookts196768_16942634 (1967, 375 pages)] * Historical Databooks: [https://archive.org/details/bitsavers_tidataBookVol1_11973959 ''TTL Vol1'' (1984, 339 pages)], [https://archive.org/details/bitsavers_tidataBookVol2_45945352 ''TTL Vol2'' (1985, 1402 pages)], [https://archive.org/details/bitsavers_tidataBookVol3_25840031 ''TTL Vol3'' (1984, 793 pages)], [https://archive.org/details/bitsavers_tidataBookVol4_14886851 ''TTL Vol4'' (1986, 445 pages)] * [https://archive.org/details/TexasInstruments_SCYD013B ''Digital Logic Pocket Data Book'' (2007, 794 pages)], [https://web.archive.org/web/20110604202009/https://focus.ti.com/lit/ml/scyb004b/scyb004b.pdf ''Logic Reference Guide'' (2004, 8 pages)], [https://web.archive.org/web/20160118225253/https://my.ece.msstate.edu/faculty/reese/EE4743/data_sheets/sdyu001k.pdf ''Logic Selection Guide'' (1998, 215 pages)] * [https://www.ti.com/lit/sg/scyt129g/scyt129g.pdf ''Little Logic Guide'' (2018, 25 pages)], [https://web.archive.org/web/20160429220820/https://focus.ti.com/pdfs/logic/littlelogicsg1.pdf ''Little Logic Selection Guide'' (2004, 24 pages)] ;Toshiba * [https://web.archive.org/web/20170919062250/https://toshiba.semicon-storage.com/info/docget.jsp?did=7426 ''General-Purpose Logic ICs'' (2012, 55 pages)] ==External links== {{Commons category}} * [http://www.nutsvolts.com/magazine/article/understanding_digital_logic_ics_part_2 Understanding 7400-series digital logic ICs] - Nuts and Volts magazine * [https://electronicsclub.info/74series.htm Thorough list of 7400-series ICs] - Electronics Club {{Authority control}} [[Category:Integrated circuits]] [[Category:Digital electronics]] [[Category:1964 introductions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Better source needed
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite news
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:Efn
(
edit
)
Template:ISBN
(
edit
)
Template:In lang
(
edit
)
Template:Notelist
(
edit
)
Template:Page needed
(
edit
)
Template:Redirect-multi
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Snd
(
edit
)
Template:Sub
(
edit
)
Template:Webarchive
(
edit
)
Template:Which
(
edit
)