Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Abscissa and ordinate
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Horizontal and vertical axes/coordinate numbers of a 2D coordinate system or graph}} {{Citations needed|date=May 2024}} [[File:Cartesian-coordinate-system.svg|thumb|right|250px|Cartesian plane with marked points (signed ordered pairs of coordinates). For any point, the ''abscissa'' is the first value (x coordinate), and the ''ordinate'' is the second value (y coordinate).]] In [[mathematics]], the '''abscissa''' ({{IPAc-en|æ|b|ˈ|s|ɪ|s|.|ə}}; plural ''abscissae'' or ''abscissas'') and the '''ordinate''' are respectively the first and second [[coordinate]] of a [[Point (geometry)|point]] in a [[Cartesian coordinate system]]:<ref name="WolframAlpha" /><ref>{{Cite web |last=Hedegaard |first=Rasmus |last2=Weisstein |first2=Eric W. |title=Ordinate |url=https://mathworld.wolfram.com/Ordinate.html |access-date=14 July 2013 |website=[[MathWorld]] |language=en}}</ref> : '''abscissa''' <math>\equiv x</math>-axis (horizontal) coordinate : '''ordinate''' <math>\equiv y</math>-axis (vertical) coordinate Together they form an [[ordered pair]] which defines the location of a point in two-dimensional [[rectangular coordinate system|rectangular space]]. More technically, the abscissa of a point is the signed measure of its projection on the primary axis. Its [[absolute value]] is the distance between the projection and the [[Origin (mathematics)|origin]] of the axis, and its [[Sign (mathematics)|sign]] is given by the location on the projection relative to the origin (before: negative; after: positive). Similarly, the ordinate of a point is the signed measure of its projection on the secondary axis. [[Cartesian_coordinate_system|In three dimensions]], the third direction is sometimes referred to as the ''[[wiktionary:applicate#Noun|applicate]]''.<ref>{{Cite web |title=Cartesian coordinates |url=https://planetmath.org/cartesiancoordinates |access-date=2025-04-02 |website=[[PlanetMath]] |archive-url=https://web.archive.org/web/20250221122412/https://planetmath.org/cartesiancoordinates |archive-date=2025-02-21 |url-status=live |quote='applicate' is rare in English, but its [equivalents]<!-- fixing typo in source --> in continental European, [such as]<!-- clarifying wording of source --> 'die Applikate' in German and 'aplikaat' in Estonian, are more known.}}</ref> == Etymology == Though the word "abscissa" ({{ety|la|linea abscissa|a line cut off}}) has been used at least since ''De Practica Geometrie'' (1220) by [[Fibonacci]] (Leonardo of Pisa), its use in its modern sense may be due to Venetian mathematician [[Stefano degli Angeli]] in his work ''Miscellaneum Hyperbolicum, et Parabolicum'' (1659).<ref>{{cite web |title =On the Word "Abscissa" |website =numberwarrior.wordpress.com |last=Dyer |first=Jason |publisher = The number Warrior |date = March 8, 2009 |url = https://numberwarrior.wordpress.com/2009/03/08/on-the-word-abscissa/ |access-date = September 10, 2015 }}</ref> Historically, the term was used in the more general sense of a 'distance'.<ref>{{Cite web |last=Miller |first=Jeff |date=June 24, 2017 |title=Earliest Known Uses of Some of the Words of Mathematics |url=https://jeff560.tripod.com/a.html |access-date=2025-01-06 |website=MacTutor |publisher=University of St. Andrews, Scotland}}</ref> In his 1892 work ''{{lang|de|Vorlesungen über die Geschichte der Mathematik}}'' ("''Lectures on history of mathematics''"), volume 2, German [[history of mathematics|historian of mathematics]] [[Moritz Cantor]] writes: <blockquote>{{lang|de|italic=yes|Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes {{lang|de|italic=no|Abscisse}} in lateinischen Originalschriften. Vielleicht kommt das Wort in Uebersetzungen der [[Apollonius of Perga|Apollonischen Kegelschnitte]] vor, wo Buch I Satz 20 von {{lang|grc|italic=no|ἀποτεμνομέναις}} die Rede ist, wofür es kaum ein entsprechenderes lateinisches Wort als {{lang|la|italic=no|abscissa}} geben möchte.}}<ref>{{cite book |title=Vorlesungen über Geschichte der Mathematik |volume=2 |edition=2nd |lang=de |last=Cantor |first=Moritz |year=1900 |publisher=B.G. Teubner |location= Leipzig |page=898 |url=https://books.google.com/books?id=LejuAAAAMAAJ&q=%22Miscellaneum+Hyperbolicum%2C+et+Parabolicum.%22+%22abscissa%22&pg=PA898 |access-date=10 September 2015}}</ref><br/> At the same time it was presumably by [Stefano degli Angeli] that a word was introduced into the mathematical vocabulary for which especially in analytic geometry the future proved to have much in store. […] We know of no earlier use of the word ''abscissa'' in Latin original texts. Maybe the word appears in translations of the [[Apollonius of Perga|Apollonian conics]], where [in] Book I, Chapter 20 there is mention of ''ἀποτεμνομέναις,'' for which there would hardly be a more appropriate Latin word than {{lang|la|abscissa}}. </blockquote> The use of the word ''ordinate'' is related to the Latin phrase ''linea ordinata appliicata'' 'line applied parallel'. ==In parametric equations== In a somewhat obsolete variant usage, the abscissa of a point may also refer to any number that describes the point's location along some path, e.g. the parameter of a [[parametric equation]].<ref name="WolframAlpha">{{cite web |last1=Hedegaard |first1=Rasmus |last2=Weisstein |first2=Eric W. |title=Abscissa |work=[[MathWorld]] |url=http://mathworld.wolfram.com/Abscissa.html |access-date=14 July 2013}}</ref> Used in this way, the abscissa can be thought of as a coordinate-geometry analog to the [[Dependent and independent variables|independent variable]] in a [[mathematical model]] or experiment (with any ordinates filling a role analogous to [[Dependent and independent variables|dependent variables]]). ==See also== {{Wiktionary|abscissa|ordinate}} * [[Function (mathematics)]] * [[Relation (mathematics)]] * [[Line chart]] ==References== {{Reflist}} [[Category:Elementary mathematics]] [[Category:Coordinate systems]] [[Category:Dimension]] [[de:Kartesisches Koordinatensystem#Das Koordinatensystem im zweidimensionalen Raum]] [[pl:Układ współrzędnych kartezjańskich#Współrzędne]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citations needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Ety
(
edit
)
Template:IPAc-en
(
edit
)
Template:Lang
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Wiktionary
(
edit
)