Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Additive function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Function that can be written as a sum over prime factors}} {{About||the [[Abstract algebra|algebra]]ic meaning|Additive map}} {{more footnotes|date=February 2013}} In [[number theory]], an '''{{anchor|definition-additive_function-number_theory}}additive function''' is an [[arithmetic function]] ''f''(''n'') of the positive [[integer]] variable ''n'' such that whenever ''a'' and ''b'' are [[coprime]], the function applied to the product ''ab'' is the sum of the values of the function applied to ''a'' and ''b'':<ref name="Erdos1939">Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077746/ online]</ref> <math display=block>f(a b) = f(a) + f(b).</math> == Completely additive == An additive function ''f''(''n'') is said to be '''completely additive''' if <math>f(a b) = f(a) + f(b)</math> holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. '''Totally additive''' is also used in this sense by analogy with [[totally multiplicative]] functions. If ''f'' is a completely additive function then ''f''(1) = 0. Every completely additive function is additive, but not vice versa. == Examples == Examples of arithmetic functions which are completely additive are: * The restriction of the [[Logarithm|logarithmic function]] to <math>\N.</math> * The '''multiplicity''' of a [[Prime number|prime]] factor ''p'' in ''n'', that is the largest exponent ''m'' for which ''p<sup>m</sup>'' [[Divisor|divides]] ''n''. * {{anchor|Integer logarithm}} ''a''<sub>0</sub>(''n'') – the sum of primes dividing ''n'' counting multiplicity, sometimes called sopfr(''n''), the potency of ''n'' or the '''integer logarithm''' of ''n'' {{OEIS|A001414}}. For example: ::''a''<sub>0</sub>(4) = 2 + 2 = 4 ::''a''<sub>0</sub>(20) = ''a''<sub>0</sub>(2<sup>2</sup> · 5) = 2 + 2 + 5 = 9 ::''a''<sub>0</sub>(27) = 3 + 3 + 3 = 9 ::''a''<sub>0</sub>(144) = ''a''<sub>0</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(3<sup>2</sup>) = 8 + 6 = 14 ::''a''<sub>0</sub>(2000) = ''a''<sub>0</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>0</sub>(2<sup>4</sup>) + ''a''<sub>0</sub>(5<sup>3</sup>) = 8 + 15 = 23 ::''a''<sub>0</sub>(2003) = 2003 ::''a''<sub>0</sub>(54,032,858,972,279) = 1240658 ::''a''<sub>0</sub>(54,032,858,972,302) = 1780417 ::''a''<sub>0</sub>(20,802,650,704,327,415) = 1240681 * The function Ω(''n''), defined as the total number of [[Prime factor#Omega functions|prime factors]] of ''n'', counting multiple factors multiple times, sometimes called the "Big Omega function" {{OEIS|A001222}}. For example; ::Ω(1) = 0, since 1 has no prime factors ::Ω(4) = 2 ::Ω(16) = Ω(2·2·2·2) = 4 ::Ω(20) = Ω(2·2·5) = 3 ::Ω(27) = Ω(3·3·3) = 3 ::Ω(144) = Ω(2<sup>4</sup> · 3<sup>2</sup>) = Ω(2<sup>4</sup>) + Ω(3<sup>2</sup>) = 4 + 2 = 6 ::Ω(2000) = Ω(2<sup>4</sup> · 5<sup>3</sup>) = Ω(2<sup>4</sup>) + Ω(5<sup>3</sup>) = 4 + 3 = 7 ::Ω(2001) = 3 ::Ω(2002) = 4 ::Ω(2003) = 1 ::Ω(54,032,858,972,279) = Ω(11 ⋅ 1993<sup>2</sup> ⋅ 1236661) = 4 ::Ω(54,032,858,972,302) = Ω(2 ⋅ 7<sup>2</sup> ⋅ 149 ⋅ 2081 ⋅ 1778171) = 6 ::Ω(20,802,650,704,327,415) = Ω(5 ⋅ 7 ⋅ 11<sup>2</sup> ⋅ 1993<sup>2</sup> ⋅ 1236661) = 7. Examples of arithmetic functions which are additive but not completely additive are: * ω(''n''), defined as the total number of distinct [[Prime factor#Omega functions|prime factors]] of ''n'' {{OEIS|A001221}}. For example: ::ω(4) = 1 ::ω(16) = ω(2<sup>4</sup>) = 1 ::ω(20) = ω(2<sup>2</sup> · 5) = 2 ::ω(27) = ω(3<sup>3</sup>) = 1 ::ω(144) = ω(2<sup>4</sup> · 3<sup>2</sup>) = ω(2<sup>4</sup>) + ω(3<sup>2</sup>) = 1 + 1 = 2 ::ω(2000) = ω(2<sup>4</sup> · 5<sup>3</sup>) = ω(2<sup>4</sup>) + ω(5<sup>3</sup>) = 1 + 1 = 2 ::ω(2001) = 3 ::ω(2002) = 4 ::ω(2003) = 1 ::ω(54,032,858,972,279) = 3 ::ω(54,032,858,972,302) = 5 ::ω(20,802,650,704,327,415) = 5 * ''a''<sub>1</sub>(''n'') – the sum of the distinct primes dividing ''n'', sometimes called sopf(''n'') {{OEIS|A008472}}. For example: ::''a''<sub>1</sub>(1) = 0 ::''a''<sub>1</sub>(4) = 2 ::''a''<sub>1</sub>(20) = 2 + 5 = 7 ::''a''<sub>1</sub>(27) = 3 ::''a''<sub>1</sub>(144) = ''a''<sub>1</sub>(2<sup>4</sup> · 3<sup>2</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(3<sup>2</sup>) = 2 + 3 = 5 ::''a''<sub>1</sub>(2000) = ''a''<sub>1</sub>(2<sup>4</sup> · 5<sup>3</sup>) = ''a''<sub>1</sub>(2<sup>4</sup>) + ''a''<sub>1</sub>(5<sup>3</sup>) = 2 + 5 = 7 ::''a''<sub>1</sub>(2001) = 55 ::''a''<sub>1</sub>(2002) = 33 ::''a''<sub>1</sub>(2003) = 2003 ::''a''<sub>1</sub>(54,032,858,972,279) = 1238665 ::''a''<sub>1</sub>(54,032,858,972,302) = 1780410 ::''a''<sub>1</sub>(20,802,650,704,327,415) = 1238677 == Multiplicative functions == From any additive function <math>f(n)</math> it is possible to create a related {{em|[[multiplicative function]]}} <math>g(n),</math> which is a function with the property that whenever <math>a</math> and <math>b</math> are coprime then: <math display=block>g(a b) = g(a) \times g(b).</math> One such example is <math>g(n) = 2^{f(n)}.</math> Likewise if <math>f(n)</math> is completely additive, then <math>g(n) = 2^{f(n)} </math> is completely multiplicative. More generally, we could consider the function <math>g(n) = c^{f(n)} </math>, where <math>c</math> is a nonzero real constant. == Summatory functions == Given an additive function <math>f</math>, let its summatory function be defined by <math display="inline">\mathcal{M}_f(x) := \sum_{n \leq x} f(n)</math>. The average of <math>f</math> is given exactly as <math display=block>\mathcal{M}_f(x) = \sum_{p^{\alpha} \leq x} f(p^{\alpha}) \left(\left\lfloor \frac{x}{p^{\alpha}} \right\rfloor - \left\lfloor \frac{x}{p^{\alpha+1}} \right\rfloor\right).</math> The summatory functions over <math>f</math> can be expanded as <math>\mathcal{M}_f(x) = x E(x) + O(\sqrt{x} \cdot D(x))</math> where <math display=block>\begin{align} E(x) & = \sum_{p^{\alpha} \leq x} f(p^{\alpha}) p^{-\alpha} (1-p^{-1}) \\ D^2(x) & = \sum_{p^{\alpha} \leq x} |f(p^{\alpha})|^2 p^{-\alpha}. \end{align}</math> The average of the function <math>f^2</math> is also expressed by these functions as <math display=block>\mathcal{M}_{f^2}(x) = x E^2(x) + O(x D^2(x)).</math> There is always an absolute constant <math>C_f > 0</math> such that for all [[natural number]]s <math>x \geq 1</math>, <math display=block>\sum_{n \leq x} |f(n) - E(x)|^2 \leq C_f \cdot x D^2(x).</math> Let <math display=block>\nu(x; z) := \frac{1}{x} \#\!\left\{n \leq x: \frac{f(n)-A(x)}{B(x)} \leq z\right\}\!.</math> Suppose that <math>f</math> is an additive function with <math>-1 \leq f(p^{\alpha}) = f(p) \leq 1</math> such that as <math>x \rightarrow \infty</math>, <math display=block>B(x) = \sum_{p \leq x} f^2(p) / p \rightarrow \infty.</math> Then <math>\nu(x; z) \sim G(z)</math> where <math>G(z)</math> is the [[normal distribution|Gaussian distribution function]] <math display=block>G(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt.</math> Examples of this result related to the [[prime omega function]] and the numbers of prime divisors of shifted primes include the following for fixed <math>z \in \R</math> where the relations hold for <math>x \gg 1</math>: <math display=block>\#\{n \leq x: \omega(n) - \log\log x \leq z (\log\log x)^{1/2}\} \sim x G(z),</math> <math display=block>\#\{p \leq x: \omega(p+1) - \log\log x \leq z (\log\log x)^{1/2}\} \sim \pi(x) G(z).</math> == See also == * [[Sigma additivity]] * [[Prime omega function]] * [[Multiplicative function]] * [[Arithmetic function]] ==References== {{Reflist}} == Further reading == {{Refbegin}} * Janko Bračič, ''Kolobar aritmetičnih funkcij'' (''[[Ring (algebra)|Ring]] of arithmetical functions''), (Obzornik mat, fiz. '''49''' (2002) 4, pp. 97–108) <span style="color:darkblue;"> (MSC (2000) 11A25) </span> * Iwaniec and Kowalski, ''Analytic number theory'', AMS (2004). {{Refend}} {{Authority control}} [[Category:Arithmetic functions]] [[Category:Additive functions| ]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Anchor
(
edit
)
Template:Authority control
(
edit
)
Template:Em
(
edit
)
Template:More footnotes
(
edit
)
Template:OEIS
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)