Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Advanced z-transform
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
In [[mathematics]] and [[signal processing]], the '''advanced z-transform''' is an extension of the [[z-transform]], to incorporate ideal delays that are not multiples of the [[sampling rate|sampling time]]. The advanced z-transform is widely applied, for example, to accurately model processing delays in [[digital control]]. It is also known as the '''modified z-transform'''. It takes the form :<math>F(z, m) = \sum_{k=0}^{\infty} f(k T + m)z^{-k}</math> where * ''T'' is the sampling period * ''m'' (the "delay parameter") is a fraction of the sampling period <math>[0, T].</math> ==Properties== If the delay parameter, ''m'', is considered fixed then all the properties of the z-transform hold for the advanced z-transform. ===Linearity=== :<math>\mathcal{Z} \left\{ \sum_{k=1}^{n} c_k f_k(t) \right\} = \sum_{k=1}^{n} c_k F_k(z, m).</math> ===Time shift=== :<math>\mathcal{Z} \left\{ u(t - n T)f(t - n T) \right\} = z^{-n} F(z, m).</math> ===Damping=== :<math>\mathcal{Z} \left\{ f(t) e^{-a\, t} \right\} = e^{-a\, m} F(e^{a\, T} z, m).</math> ===Time multiplication=== :<math>\mathcal{Z} \left\{ t^y f(t) \right\} = \left(-T z \frac{d}{dz} + m \right)^y F(z, m).</math> ===Final value theorem=== :<math>\lim_{k \to \infty} f(k T + m) = \lim_{z \to 1} (1-z^{-1})F(z, m).</math> ==Example== Consider the following example where <math>f(t) = \cos(\omega t)</math>: :<math>\begin{align} F(z, m) & = \mathcal{Z} \left\{ \cos \left(\omega \left(k T + m \right) \right) \right\} \\ & = \mathcal{Z} \left\{ \cos (\omega k T) \cos (\omega m) - \sin (\omega k T) \sin (\omega m) \right\} \\ & = \cos(\omega m) \mathcal{Z} \left\{ \cos (\omega k T) \right\} - \sin (\omega m) \mathcal{Z} \left\{ \sin (\omega k T) \right\} \\ & = \cos(\omega m) \frac{z \left(z - \cos (\omega T) \right)}{z^2 - 2z \cos(\omega T) + 1} - \sin(\omega m) \frac{z \sin(\omega T)}{z^2 - 2z \cos(\omega T) + 1} \\ & = \frac{z^2 \cos(\omega m) - z \cos(\omega(T - m))}{z^2 - 2z \cos(\omega T) + 1}. \end{align}</math> If <math>m=0</math> then <math>F(z, m)</math> reduces to the transform :<math>F(z, 0) = \frac{z^2 - z \cos(\omega T)}{z^2 - 2z \cos(\omega T) + 1},</math> which is clearly just the ''z''-transform of <math>f(t)</math>. ==References== {{reflist}} *{{cite book |author-link=Eliahu Ibraham Jury |first=Eliahu Ibraham |last=Jury |title=Theory and Application of the z-Transform Method |publisher=Krieger |date=1973 |isbn=0-88275-122-0 |oclc=836240}} {{DSP}} [[Category:Transforms]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:DSP
(
edit
)
Template:Reflist
(
edit
)