Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Agoh–Giuga conjecture
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number theory conjecture}} In [[number theory]] the '''Agoh–Giuga conjecture''' on the [[Bernoulli number]]s ''B''<sub>''k''</sub> postulates that ''p'' is a [[prime number]] [[if and only if]] :<math>pB_{p-1} \equiv -1 \pmod p.</math> It is named after [[Takashi Agoh]] and [[Giuseppe Giuga]]. ==Equivalent formulation== The conjecture as stated above is due to [[Takashi Agoh]] (1990); an equivalent formulation is due to [[Giuseppe Giuga]], from 1950, to the effect that ''p'' is prime if and only if :<math>1^{p-1}+2^{p-1}+ \cdots +(p-1)^{p-1} \equiv -1 \pmod p</math> which may also be written as :<math>\sum_{i=1}^{p-1} i^{p-1} \equiv -1 \pmod p.</math> It is trivial to show that ''p'' being prime is sufficient for the second equivalence to hold, since if ''p'' is prime, [[Fermat's little theorem]] states that :<math>a^{p-1} \equiv 1 \pmod p</math> for <math>a = 1,2,\dots,p-1</math>, and the equivalence follows, since <math>p-1 \equiv -1 \pmod p.</math> ==Status== The statement is still a conjecture since it has not yet been proven that if a number ''n'' is not prime (that is, ''n'' is [[composite number|composite]]), then the formula does not hold. It has been shown that a composite number ''n'' satisfies the formula if and only if it is both a [[Carmichael number]] and a [[Giuga number]], and that if such a number exists, it has at least 13,800 digits (Borwein, Borwein, Borwein, Girgensohn 1996). Laerte Sorini, in a work of 2001 showed that a possible counterexample should be a number ''n'' greater than 10<sup>36067</sup> which represents the limit suggested by Bedocchi for the demonstration technique specified by Giuga to his own conjecture. ==Relation to Wilson's theorem== The Agoh–Giuga conjecture bears a similarity to [[Wilson's theorem]], which has been proven to be true. Wilson's theorem states that a number ''p'' is prime if and only if :<math>(p-1)! \equiv -1 \pmod p,</math> which may also be written as :<math>\prod_{i=1}^{p-1} i \equiv -1 \pmod p.</math> For an odd prime p we have :<math>\prod_{i=1}^{p-1} i^{p-1} \equiv (-1)^{p-1} \equiv 1 \pmod p,</math> and for p=2 we have :<math>\prod_{i=1}^{p-1} i^{p-1} \equiv (-1)^{p-1} \equiv 1 \pmod p.</math> So, the truth of the Agoh–Giuga conjecture combined with Wilson's theorem would give: a number ''p'' is prime if and only if :<math>\sum_{i=1}^{p-1} i^{p-1} \equiv -1 \pmod p</math> and :<math>\prod_{i=1}^{p-1} i^{p-1} \equiv 1 \pmod p.</math> == See also == * {{slink|Bernoulli number#Arithmetical properties of the Bernoulli numbers}} ==References== {{reflist}} * {{cite journal | last=Giuga | first=Giuseppe | title=Su una presumibile proprietà caratteristica dei numeri primi | language=Italian | journal=Ist.Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. | volume=83 | pages=511–518 | year=1951 | issn=0375-9164 | zbl=0045.01801 }} * {{cite journal | last=Agoh | first=Takashi | title=On Giuga's conjecture | journal=[[Manuscripta Mathematica]] | volume=87 | number=4 | pages=501–510 | year=1995 | zbl=0845.11004 | doi=10.1007/bf02570490}} * {{cite journal | author1-link=David Borwein | last1=Borwein | first1=D. | author2-link=Jonathan Borwein | last2=Borwein | first2=J. M. | author3-link=Peter Borwein | last3=Borwein | first3=P. B. | last4=Girgensohn | first4=R. | title=Giuga's Conjecture on Primality | journal=[[American Mathematical Monthly]] | volume=103 | issue=1 | pages=40–50 | year=1996 | zbl=0860.11003 | url=http://www.math.uwo.ca/~dborwein/cv/giuga.pdf | doi=10.2307/2975213 | access-date=2005-05-29 | archive-url=https://web.archive.org/web/20050531164907/http://www.math.uwo.ca/~dborwein/cv/giuga.pdf | archive-date=2005-05-31 | url-status=dead | jstor=2975213 | citeseerx=10.1.1.586.1424 }} * {{cite journal | last=Sorini | first=Laerte | title=Un Metodo Euristico per la Soluzione della Congettura di Giuga | language=Italian | journal=Quaderni di Economia, Matematica e Statistica, DESP, Università di Urbino Carlo Bo | volume=68 | year=2001 | issn=1720-9668 }} {{Prime number conjectures}} {{DEFAULTSORT:Agoh-Giuga conjecture}} [[Category:Conjectures about prime numbers]] [[Category:Unsolved problems in number theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:Prime number conjectures
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)