Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Algebraic quantum field theory
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Axiomatic approach to quantum field theory}} '''Algebraic quantum field theory''' ('''AQFT''') is an application to '''local quantum physics''' of [[C*-algebra]] theory. Also referred to as the '''Haag–Kastler [[axiomatic framework]]''' for [[quantum field theory]], because it was introduced by {{harvs|txt|last=Haag|first=Rudolf|authorlink=Rudolf Haag|last2=Kastler|first2=Daniel|author2-link=Daniel Kastler|year=1964}}. The axioms are stated in terms of an algebra given for every open set in [[Minkowski space]], and mappings between those. == {{anchor|Overview}}Haag–Kastler axioms == <!-- This Anchor tag serves to provide a permanent target for incoming section links. Please do not remove it, nor modify it, except to add another appropriate anchor. If you modify the section title, please anchor the old title. It is always best to anchor an old section header that has been changed so that links to it will not be broken. See [[Template:Anchor]] for details. This text is produced using {{subst:Anchor comment}} --> Let <math>\mathcal{O}</math> be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a set <math>\{\mathcal{A}(O)\}_{O\in\mathcal{O}}</math> of [[von Neumann algebra]]s <math>\mathcal{A}(O)</math> on a common [[Hilbert space]] <math>\mathcal{H}</math> satisfying the following axioms:<ref>{{cite book | last1=Baumgärtel | first1=Hellmut | title=Operatoralgebraic Methods in Quantum Field Theory | year=1995 | publisher=Akademie Verlag | location=Berlin | isbn=3-05-501655-6 }}</ref> * ''Isotony'': <math>O_1 \subset O_2</math> implies <math>\mathcal{A}(O_1) \subset \mathcal{A}(O_2)</math>. * ''Causality'': If <math>O_1</math> is space-like separated from <math>O_2</math>, then <math>[\mathcal{A}(O_1),\mathcal{A}(O_2)]=0</math>. * ''Poincaré covariance'': A strongly continuous unitary representation <math>U(\mathcal{P})</math> of the Poincaré group <math>\mathcal{P}</math> on <math>\mathcal{H}</math> exists such that <math>\mathcal{A}(gO) = U(g) \mathcal{A}(O) U(g)^*,\,\,g \in \mathcal{P}.</math> * ''Spectrum condition'': The joint spectrum <math>\mathrm{Sp}(P)</math> of the energy-momentum operator <math>P</math> (i.e. the generator of space-time translations) is contained in the closed forward lightcone. * ''Existence of a vacuum vector'': A cyclic and Poincaré-invariant vector <math>\Omega\in\mathcal{H}</math> exists. The net algebras <math>\mathcal{A}(O)</math> are called ''local algebras'' and the C* algebra <math>\mathcal{A} := \overline{\bigcup_{O\in\mathcal{O}}\mathcal{A}(O)}</math> is called the ''quasilocal algebra''. == Category-theoretic formulation <!--'Isotony' redirects here-->== Let '''Mink''' be the [[category theory|category]] of [[open subset]]s of Minkowski space M with [[inclusion map]]s as [[morphism]]s. We are given a [[covariant functor]] <math>\mathcal{A}</math> from '''Mink''' to '''uC*alg''', the category of [[unital algebra|unital]] C* algebras, such that every morphism in '''Mink''' maps to a [[monomorphism]] in '''uC*alg''' ('''isotony'''<!--boldface per WP:R#PLA-->). The [[Poincaré group]] acts [[continuity (topology)|continuously]] on '''Mink'''. There exists a [[pullback]] of this [[Group action (mathematics)|action]], which is continuous in the [[norm topology]] of <math>\mathcal{A}(M)</math> ([[Poincaré covariance]]). Minkowski space has a [[causal structure]]. If an [[open set]] ''V'' lies in the [[causal complement]] of an open set ''U'', then the [[Image (mathematics)|image]] of the maps :<math>\mathcal{A}(i_{U,U\cup V})</math> and :<math>\mathcal{A}(i_{V,U\cup V})</math> [[Commutative operation|commute]] (spacelike commutativity). If <math>\bar{U}</math> is the [[causal completion]] of an open set ''U'', then <math>\mathcal{A}(i_{U,\bar{U}})</math> is an [[isomorphism]] (primitive causality). A [[state (functional analysis)|state]] with respect to a C*-algebra is a [[positive linear functional]] over it with unit [[norm (mathematics)|norm]]. If we have a state over <math>\mathcal{A}(M)</math>, we can take the "[[partial trace]]" to get states associated with <math>\mathcal{A}(U)</math> for each open set via the [[net (mathematics)|net]] [[monomorphism]]. The states over the open sets form a [[presheaf]] structure. According to the [[GNS construction]], for each state, we can associate a [[Hilbert space]] [[group representation|representation]] of <math>\mathcal{A}(M).</math> [[Pure state]]s correspond to [[irreducible representation]]s and [[Mixed state (physics)|mixed state]]s correspond to [[reducible representation]]s. Each irreducible representation (up to [[Equivalence relation|equivalence]]) is called a [[superselection sector]]. We assume there is a pure state called the [[vacuum]] such that the Hilbert space associated with it is a [[unitary representation]] of the [[Poincaré group]] compatible with the Poincaré covariance of the net such that if we look at the [[Poincaré algebra]], the spectrum with respect to [[energy-momentum 4-vector|energy-momentum]] (corresponding to [[Poincare group|spacetime translation]]s) lies on and in the positive [[light cone]]. This is the vacuum sector. == QFT in curved spacetime == More recently, the approach has been further implemented to include an algebraic version of [[quantum field theory in curved spacetime]]. Indeed, the viewpoint of local quantum physics is in particular suitable to generalize the [[renormalization]] procedure to the theory of quantum fields developed on curved backgrounds. Several rigorous results concerning QFT in presence of a [[black hole]] have been obtained.{{cn|date=December 2022}} == References == <references/> == Further reading == *{{Citation | last1=Haag | first1=Rudolf | author-link1=Rudolf Haag | last2=Kastler | first2=Daniel | author-link2=Daniel Kastler | title=An Algebraic Approach to Quantum Field Theory | doi=10.1063/1.1704187 | mr=0165864 | year=1964 | journal=[[Journal of Mathematical Physics]] | issn=0022-2488 | volume=5 | issue=7 | pages=848–861|bibcode = 1964JMP.....5..848H |url=https://aip.scitation.org/doi/10.1063/1.1704187 | url-access=subscription }} *{{Citation | last1=Haag | first1=Rudolf | author-link1=Rudolf Haag | title=Local Quantum Physics: Fields, Particles, Algebras | orig-year=1992 | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=2nd | series=Theoretical and Mathematical Physics | isbn=978-3-540-61451-7 | mr=1405610 | year=1996 | url=https://link.springer.com/book/10.1007/978-3-642-61458-3 | doi=10.1007/978-3-642-61458-3 | url-access=subscription }} *{{cite journal |last1=Brunetti |first1=Romeo |last2=Fredenhagen |first2=Klaus |last3=Verch |first3=Rainer |title=The Generally Covariant Locality Principle – A New Paradigm for Local Quantum Field Theory |journal=[[Communications in Mathematical Physics]] |date=2003 |volume=237 |issue=1–2 |pages=31–68 |doi=10.1007/s00220-003-0815-7 |url=https://link.springer.com/article/10.1007/s00220-003-0815-7 |arxiv=math-ph/0112041|bibcode=2003CMaPh.237...31B |s2cid=13950246 }} *{{cite journal |last1=Brunetti |first1=Romeo |last2=Dütsch |first2=Michael |last3=Fredenhagen |first3=Klaus |title=Perturbative Algebraic Quantum Field Theory and the Renormalization Groups |journal=[[Advances in Theoretical and Mathematical Physics]] |date=2009 |volume=13 |issue=5 |pages=1541–1599 |doi=10.4310/ATMP.2009.v13.n5.a7 |url=https://inspirehep.net/literature/811019 |arxiv=0901.2038|s2cid=15493763 }} *{{cite book |editor-last1=Bär |editor-first1=Christian |editor-link1=Christian Bär |editor-last2=Fredenhagen |editor-first2=Klaus |editor-link2=Klaus Fredenhagen |title=Quantum Field Theory on Curved Spacetimes: Concepts and Mathematical Foundations |publisher=Springer |doi=10.1007/978-3-642-02780-2 |year=2009 |series=Lecture Notes in Physics |volume=786 |isbn=978-3-642-02780-2 |url=https://link.springer.com/book/10.1007/978-3-642-02780-2}} *{{cite book |editor-last1=Brunetti |editor-first1=Romeo |editor-last2=Dappiaggi |editor-first2=Claudio |editor-last3=Fredenhagen |editor-first3=Klaus |editor-link3=Klaus Fredenhagen |editor-last4=Yngvason |editor-first4=Jakob |editor-link4=Jakob Yngvason |title=Advances in Algebraic Quantum Field Theory |year=2015 |publisher=Springer |doi=10.1007/978-3-319-21353-8 |series=Mathematical Physics Studies |isbn=978-3-319-21353-8 |url=https://link.springer.com/book/10.1007/978-3-319-21353-8}} *{{cite book |last1=Rejzner |first1=Kasia |author-link1=Kasia Rejzner |title=Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians |year=2016 |publisher=Springer |doi=10.1007/978-3-319-25901-7 |series=Mathematical Physics Studies |arxiv=1208.1428 |bibcode=2016paqf.book.....R |isbn=978-3-319-25901-7 |url=https://link.springer.com/book/10.1007/978-3-319-25901-7}} *{{cite book |last1=Hack |first1=Thomas-Paul |title=Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes |year=2016 |publisher=Springer |series=SpringerBriefs in Mathematical Physics |volume=6 |doi=10.1007/978-3-319-21894-6 |isbn=978-3-319-21894-6 |arxiv=1506.01869 |bibcode=2016caaq.book.....H |s2cid=119657309 |url=https://link.springer.com/book/10.1007/978-3-319-21894-6}} *{{cite book |last1=Dütsch |first1=Michael |title=From Classical Field Theory to Perturbative Quantum Field Theory |year=2019 |publisher=Birkhäuser |series=Progress in Mathematical Physics |volume=74 |doi=10.1007/978-3-030-04738-2 |isbn=978-3-030-04738-2 |s2cid=126907045 |url=https://link.springer.com/book/10.1007/978-3-030-04738-2}} *{{cite book |last1=Yau |first1=Donald |title=Homotopical Quantum Field Theory |year=2019 |publisher=World Scientific |doi=10.1142/11626|arxiv=1802.08101 |url=https://www.worldscientific.com/worldscibooks/10.1142/11626 |isbn=978-981-121-287-1|s2cid=119168109 }} *{{cite journal |last1=Dedushenko |first1=Mykola |title=Snowmass white paper: The quest to define QFT |journal=International Journal of Modern Physics A |arxiv=2203.08053 |date=2023 |volume=38 |issue=4n05 |doi=10.1142/S0217751X23300028 |s2cid=247450696 }} == External links == * [https://www.lqp2.org Local Quantum Physics Crossroads 2.0] – A network of scientists working on local quantum physics * [https://www.lqp2.org/faceted-paper-view Papers] – A database of preprints on algebraic QFT * [https://www.physik.uni-hamburg.de/en/th2/ag-fredenhagen.html Algebraic Quantum Field Theory] – AQFT resources at the University of Hamburg {{Quantum field theories}} [[Category:Axiomatic quantum field theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cn
(
edit
)
Template:Harvs
(
edit
)
Template:Quantum field theories
(
edit
)
Template:Short description
(
edit
)