Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Alpha Centauri
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Star system in the Centaurus constellation}} {{hatnote group| {{About-distinguish|α Centauri, the multi-star system in the constellation Centaurus|HD 125823{{!}}a Centauri|HD 100673{{!}}A Centauri|Centaurus A}} {{Other uses}} }} {{Use British English|date=November 2021}} {{Use dmy dates|date=November 2021}} {{Starbox begin | name = Alpha Centauri AB{{efn| [[Proxima Centauri]] is gravitationally bound to the {{nobr|α Centauri}} system, but for practical and historical reasons it is described in detail in its own article. }} }} {{Starbox image | image = [[File:Alpha, Beta and Proxima Centauri (1).jpg|300px|alt=Two bright stars against a dense background of fainter stars, with one of the fainter stars circled in red]] | caption = {{longitem|Alpha Centauri AB (left) forms a triple star system with [[Proxima Centauri]] (below, south of, {{nobr|α Centauri AB}}), circled in red. The bright star to the right is [[Beta Centauri]]. |style=font-size: 1em; padding: 4px 0;}} <!-- Please do not change. The two bright stars are Alpha and Beta, not just A and B. --> }} {{Starbox observe 2s | epoch = [[J2000.0]] | constell = [[Centaurus]] | component1 = {{nobr|α Centauri A}} (Rigil Kentaurus) | ra1 = {{RA|14|39|36.49400}}<ref name=hipparcos>{{cite journal |last1=Van Leeuwen |first1=F. |year=2007 |title=Validation of the new Hipparcos reduction |journal=Astronomy and Astrophysics |volume=474 |issue=2 |pages=653–664 |doi=10.1051/0004-6361:20078357 |arxiv=0708.1752 |bibcode=2007A&A...474..653V |s2cid=18759600}}</ref> | dec1 = {{DEC|−60|50|02.3737}}<ref name=hipparcos/> | appmag_v1 = +0.01<ref name=ducati>{{cite report |last1=Ducati |first1=J. R. |year=2002 |title=Catalogue of Stellar Photometry in Johnson's 11 color system |series=CDS/ADC Collection of Electronic Catalogues |volume=2237 |department = VizieR Online Data Catalog |bibcode=2002yCat.2237....0D }}</ref> | component2 = {{nobr|α Centauri B}} (Toliman) | ra2 = {{RA|14|39|35.06311}}<ref name=hipparcos/> | dec2 = {{DEC|−60|50|15.0992}}<ref name=hipparcos/> | appmag_v2 = +1.33<ref name=ducati/> }} {{Starbox character | engvar = en-UK | component = A | class = G2V<ref name=torres2006>{{cite journal |last1=Torres |first1=C.A.O. |last2=Quast|first2=G.R. |last3=da Silva |first3=L. |last4=de la Reza |first4=R. |last5=Melo |first5=C.H.F. |last6=Sterzik |first6=M. |year=2006 |title=Search for associations containing young stars (SACY) |journal=[[Astronomy and Astrophysics]] |volume=460 |issue=3 |pages=695–708 |issn=0004-6361 |doi=10.1051/0004-6361:20065602 |arxiv=astro-ph/0609258 |bibcode=2006A&A...460..695T |s2cid=16080025}}</ref> | b-v = +0.71<ref name=ducati/> | u-b = | component2 = B | class2 = K1V<ref name=torres2006/> | b-v2 = +0.88<ref name=ducati/> | u-b2 = }} {{Starbox astrometry | component1 = A | radial_v = {{val|−21.4|0.76}}<ref name=valenti2005>{{cite journal |last1=Valenti |first1=Jeff A. |last2=Fischer |first2=Debra A. |year=2005 |title=Spectroscopic properties of cool stars (SPOCS) I. 1040 F, G, and K dwarfs from Keck, Lick, and AAT planet search programs |journal=The Astrophysical Journal Supplement Series |volume=159 |issue=1 |pages=141–166 |issn=0067-0049 |doi=10.1086/430500 |doi-access=free |bibcode=2005ApJS..159..141V }}</ref> | prop_mo_ra = −3679.25<ref name=hipparcos/> | prop_mo_dec = +473.67<ref name=hipparcos/> | parallax = 750.81 | p_error = 0.38 | parallax_footnote = <ref name=Akeson2021>{{cite journal |last1=Akeson |first1=Rachel |last2=Beichman |first2=Charles |last3=Kervella |first3=Pierre |last4=Fomalont |first4=Edward |last5=Benedict |first5=G. Fritz |date=20 April 2021 |title=Precision millimeter astrometry of the {{nobr|α Centauri AB}} system |journal= [[The Astronomical Journal]] |volume=162 |issue=1 |page=14 |s2cid=233307418 |doi-access=free |doi=10.3847/1538-3881/abfaff |bibcode=2021AJ....162...14A |arxiv=2104.10086 }}</ref> | absmag_v = 4.38<ref name=Wiegert/> | component2 = B | radial_v2 = {{val|−18.6|1.64}}<ref name=valenti2005/> | prop_mo_ra2 = −3614.39<ref name=hipparcos/> | prop_mo_dec2 = +802.98<ref name=hipparcos/> | parallax2 = 750.81 | p_error2 = 0.38 | parallax_footnote2 = <ref name=Akeson2021/> | absmag_v2 = 5.71<ref name=Wiegert/> }} {{Starbox orbit | primary = A | name = B | period = {{val|79.762|0.019}} | axis = {{val|17.493|0.0096}} | eccentricity = {{val|0.51947|0.00015}} | inclination = {{val|79.243|0.0089}} | node = {{val|205.073|0.025}} | periastron = {{val|1875.66|0.012}} | periarg = {{val|231.519|0.027}} | reference = <ref name=Akeson2021/> }} {{Starbox detail | component1 = {{nobr|α Centauri A}} | mass = {{Val|1.0788|0.0029}}<ref name=Akeson2021/> | radius = {{Val|1.2175|0.0055}}<ref name=Akeson2021/> | gravity = 4.30<ref name=aaa449>{{cite journal |last1=Gilli |first1=G. |last2=Israelian |first2=G. |last3=Ecuvillon |first3=A. |last4=Santos |first4=N.C. |last5=Mayor |first5=M. |year=2006 |title=Abundances of refractory elements in the atmospheres of stars with extrasolar planets |journal=[[Astronomy and Astrophysics]] |volume=449 |issue=2 |pages=723–736 |id=libcode 2005astro.ph.12219G |doi=10.1051/0004-6361:20053850 |arxiv=astro-ph/0512219 |bibcode=2006A&A...449..723G |s2cid=13039037}}</ref> | luminosity = {{Val|1.5059|0.0019}}<ref name=Akeson2021/> | temperature = {{val|5804|13|fmt=commas}}<ref name="soubiran">{{Cite journal |last1=Soubiran |first1=C. |last2=Creevey |first2=O. L. |last3=Lagarde |first3=N. |last4=Brouillet |first4=N. |last5=Jofré |first5=P. |last6=Casamiquela |first6=L. |last7=Heiter |first7=U. |last8=Aguilera-Gómez |first8=C. |last9=Vitali |first9=S. |last10=Worley |first10=C. |last11=de Brito Silva |first11=D. |date=2024-02-01 |title=Gaia FGK benchmark stars: Fundamental Teff and log g of the third version |bibcode=2024A&A...682A.145S |journal=Astronomy and Astrophysics |volume=682 |pages=A145 |doi=10.1051/0004-6361/202347136 |arxiv=2310.11302 |issn=0004-6361}} [https://vizier.cds.unistra.fr/viz-bin/VizieR?-source=J/A%2BA/682/A145&Plx=%3E500 Alpha Centauri's database entry] at [[VizieR]].</ref> | metal_fe = {{val|0.20|0.01}}<ref name=soubiran/> | rotational_velocity = {{val|2.7|0.7}}<ref name=aaa470>{{cite journal |last1=Bazot |first1=M. |display-authors=etal |year=2007 |title=Asteroseismology of {{nobr|α Centauri A.}} Evidence of rotational splitting |journal=[[Astronomy and Astrophysics]] |volume=470 |issue=1 |pages=295–302 |doi=10.1051/0004-6361:20065694 |bibcode=2007A&A...470..295B |arxiv=0706.1682 |s2cid=118785894 }}</ref> | rotation = {{val|28.3|0.5|ul=days}}<ref name=Huber2020>{{cite journal |last1=Huber |first1=Daniel |last2=Zwintz |first2=Konstanze |collaboration=the BRITE team |date=July 2020 |title=Solar-like oscillations: Lessons learned & first results from TESS |journal=Stars and Their Variability Observed from Space |page=457 |bibcode=2020svos.conf..457H |arxiv=2007.02170 }}</ref> | age_gyr = >4.8 | component2 = {{nobr|α Centauri B}} | mass2 = {{Val|0.9092|0.0025}}<ref name=Akeson2021/> | radius2 = {{Val|0.8591|0.0036}}<ref name=Akeson2021/> | gravity2 = 4.37<ref name=aaa449/> | luminosity2 = {{Val|0.4981|0.0007}}<ref name=Akeson2021/> | temperature2 = {{val|5207|12|fmt=commas}}<ref name=soubiran/> | metal_fe2 = {{val|0.24|0.01}}<ref name=soubiran/> | rotational_velocity2 = {{val|1.1|0.8}}<ref name=raassen2003>{{cite journal |last1=Raassen |first1=A.J.J. |last2=Ness |first2=J.-U. |last3=Mewe |first3=R. |last4=van der Meer |first4=R.L.J. |last5=Burwitz |first5=V. |last6=Kaastran |first6=J.S. |year=2003 |title=Chandra-LETGS X-ray observation of {{nobr|α Centauri:}} A nearby (G2V + K1V) binary system |journal=[[Astronomy & Astrophysics]] |volume=400 |issue=2 |pages=671–678 |bibcode=2003A&A...400..671R |doi=10.1051/0004-6361:20021899 |doi-access=free}}</ref> | rotation2 = {{val|36.7|0.3|ul=days}}<!-- <ref name=dewarf2010>{{cite journal |last1=De Warf |first1=L. |last2=Datin |first2=K. |last3=Guinan |first3=E. |title=X-ray, FUV, and UV observations of {{nobr|α Centauri B:}} Determination of long-term magnetic activity cycle and rotation period |journal=[[The Astrophysical Journal]] |volume=722 |issue=1 |year=2010 |pages=343–357 |doi=10.1088/0004-637X/722/1/343 |arxiv=1009.1652 |bibcode=2010ApJ...722..343D |s2cid=118635144 }}</ref> --><ref name=Dumusque2014>{{cite journal |last1=Dumusque |first1=Xavier |date=December 2014 |title=Deriving Stellar Inclination of Slow Rotators Using Stellar Activity |journal=[[The Astrophysical Journal]] |volume=796 |issue=2 |pages=133 |doi=10.1088/0004-637X/796/2/133 |arxiv=1409.3593 |bibcode=2014ApJ...796..133D|s2cid=119184190 }}</ref> | age_gyr2 = {{val|5.3|0.3}}<ref name=joyce>{{cite journal |last1=Joyce |first1=M. |last2=Chaboyer |first2=B. |year=2018 |title=Classically and asteroseismically constrained 1D stellar evolution models of {{nobr|α Centauri A}} and B using empirical mixing length calibrations |journal=[[The Astrophysical Journal]] |volume=864 |issue=1 |page=99 |arxiv=1806.07567 |bibcode=2018ApJ...864...99J |doi=10.3847/1538-4357/aad464 |doi-access=free |s2cid=119482849 }}</ref> }} {{Starbox catalog | names = [[Gliese Catalogue of Nearby Stars|Gliese 559]], [[Fifth Fundamental Catalogue|FK5 538]], [[Cordoba Durchmusterung|CD]]−60°5483, [[Catalog of Components of Double and Multiple Stars|CCDM J14396-6050]], [[Boss General Catalogue|GC 19728]] | component1 = α Cen A | names1 = Rigil Kentaurus, Rigil Kent, [[Bayer designation|α<sup>1</sup> Centauri]], [[Harvard Revised catalogue|HR 5459]], [[Henry Draper catalogue|HD 128620]], [[General Catalogue of Trigonometric Parallaxes|GCTP 3309.00]], [[Luyten Half-Second catalogue|LHS 50]], [[Smithsonian Astrophysical Observatory Star Catalog|SAO 252838]], [[Hipparcos catalogue|HIP 71683]] | component2 = α Cen B | names2 = Toliman, [[Bayer designation|α<sup>2</sup> Centauri]], [[Harvard Revised catalogue|HR 5460]], [[Henry Draper catalogue|HD 128621]], [[Luyten Half-Second catalogue|LHS 51]], [[Hipparcos catalogue|HIP 71681]] }} {{Starbox reference | Simbad = alpha+centauri|sn = AB | Simbad2 = TYC+9007-5849-1|sn2 = A | Simbad3 = TYC+9007-5848-1|sn3 = B | NSTED = alf%20Cen | ARICNS = 01151 }} {{Starbox end}} '''Alpha Centauri''' ('''{{nobr|α Centauri}}''', '''α Cen''', or '''Alpha Cen''') is a [[star system]] in the southern [[constellation]] of [[Centaurus (constellation)|Centaurus]]. It consists of three stars: Rigil Kentaurus ({{nobr|α Centauri A}}), Toliman ({{nobr|α Centauri B}}), and [[Proxima Centauri]] ({{nobr|α Centauri C}}).<ref name=WGSN/> Proxima Centauri is the [[List of nearest stars|closest star]] to the [[Sun]] at 4.2465 [[light-year]]s (ly) which is 1.3020 [[Parsec|pc]]. Rigil Kentaurus and Toliman are [[Sun-like]] stars ([[G-type main-sequence star|class G]] and [[K-type main-sequence star|K]], respectively) that together form the [[binary star]] system {{nobr|α Centauri AB}}. To the [[naked eye]], these two main components appear to be a single star with an [[apparent magnitude]] of −0.27. It is the brightest star in the constellation and the [[List of brightest stars|third-brightest]] in the [[night sky]], outshone by only [[Sirius]] and [[Canopus]]. Rigil Kentaurus has 1.1 times the [[Solar mass|mass]] ({{solar mass}}) and 1.5 times the [[Solar luminosity|luminosity of the Sun]] ({{solar luminosity}}), while Toliman is smaller and cooler, at {{solar mass|0.9}} and less than {{solar luminosity|0.5}}.<ref>{{cite press release |first1=Pierre |last1=Kervella |first2=Frederic |last2=Thevenin |date=15 March 2003 |title=A family portrait of the Alpha Centauri system |publisher=[[European Southern Observatory]] |page=5 |id=eso0307, PR 05/03 |bibcode=2003eso..pres...39. |url=http://www.eso.org/public/news/eso0307/ }}</ref> The pair orbit around a [[barycentre|common centre]] with an orbital period of 79 years.<ref name=SixthCatOrbVisBin/> Their elliptical orbit is [[orbital eccentricity|eccentric]], so that the distance between A and B varies from 35.6 [[astronomical unit]]s (AU), or about the distance between [[Pluto]] and the Sun, to {{nobr|11.2 AU,}} or about the distance between [[Saturn]] and the Sun. One astronomical unit is the distance from Earth to the Sun, 150 million kilometers. [[Proxima Centauri]] is a small faint [[red dwarf]] ([[Stellar classification#Class M|class M]]). Though not visible to the naked eye, Proxima Centauri is the closest star to the Sun at a distance of {{cvt|1.30|pc|ly|2|order=flip}}, slightly closer than {{nobr|α Centauri AB}}. The distance between Proxima Centauri and {{nobr|α Centauri AB}} is about {{cvt|13000|AU|ly|2|lk=in}},<ref name=Kervella2017>{{cite journal |last1=Kervella |first1=P. |last2=Thévenin |first2=F. |last3=Lovis |first3=C. |date=January 2017 |title=Proxima's orbit around {{nobr|α Centauri}} |journal=Astronomy & Astrophysics |volume=598 |page=L7 |arxiv=1611.03495 |bibcode=2017A&A...598L...7K |doi=10.1051/0004-6361/201629930 |s2cid=50867264}}</ref> equivalent to about 430 times the radius of [[Neptune|Neptune's]] orbit. Proxima Centauri has one confirmed planet: [[Proxima Centauri b|Proxima b]], an [[Terrestrial planet|Earth-sized]] planet in the [[habitable zone]] (though it is unlikely to be habitable), one candidate planet, [[Proxima Centauri d|Proxima d]], [[sub-Earth]] which orbits very closely to the star,<ref name=Faria2022/> and the controversial [[Proxima Centauri c|Proxima c]], a [[mini-Neptune]] {{val|1.5}} [[astronomical unit]]s away.<ref name=Artigau2022/> Rigil Kentaurus may have a [[Candidate 1|Neptune-sized planet]] in the habitable zone, though it is not yet known with certainty to be planetary in nature and could be an artifact of the discovery mechanism.<ref name=WagnerBoehle2021/> Toliman has no known planets.<ref name=Rajpaul2016/> == Etymology and nomenclature == α Centauri ([[Latinisation of names|Latinised]] to Alpha Centauri) is the system's [[Bayer designation|designation]] given by [[Johann Bayer|J. Bayer]] in 1603. It belongs to the constellation [[Centaurus]], named after the [[Centaur|part human, part horse creature]] in Greek mythology; [[Heracles]] accidentally wounded the centaur and placed him in the sky after his death. Alpha Centauri marks the right front hoof of the Centaur.<ref>{{cite web | title=Alpha Centauri, the star system closest to our sun | date=16 April 2023 |url=https://earthsky.org/brightest-stars/alpha-centauri-is-the-nearest-bright-star/#:~:text=Alpha%20Centauri%20is%20the%20brightest,sky%20after%20death%20by%20Zeus }}</ref> The common name Rigil Kentaurus is a Latinisation of the Arabic translation {{lang|ar|رجل القنطورس|rtl=yes}} ''Rijl al-Qinṭūrus,'' meaning "the Foot of the Centaur".<ref name=Kunitx-Smart-2006/><ref>{{cite magazine |first=George R.|last=Davis Jr |date=October 1944 |title=The pronunciations, derivations, and meanings of a selected list of star names |magazine=[[Popular Astronomy (US magazine)|Popular Astronomy]] |volume=52 |issue=3 |page=16 |bibcode=1944PA.....52....8D }}</ref> ''Qinṭūrus'' is the Arabic transliteration of the Greek {{math|Κένταυρος}} (Kentaurus).<ref>{{cite book |first = Emilie |last = Savage-Smith |year = 1985 |title = Islamicate Celestial Globes: Their history, construction, and use |series = Smithsonian Studies in History and Technology |volume = 46 |publisher = Smithsonian Institution Press |url = https://www.govinfo.gov/content/pkg/GOVPUB-SI-PURL-gpo20712/pdf/GOVPUB-SI-PURL-gpo20712.pdf }}</ref> The name is frequently abbreviated to Rigil Kent ({{IPAc-en|ˈ|r|aɪ|dʒ|əl|_|'|k|E|n|t}}) or even Rigil, though the latter name is better known for [[Rigel]] ({{mvar|β}} Orionis).<ref name=Allen>{{cite book |first = R.H. |last = Allen |title = Star Names and their Meanings }}</ref><ref>{{cite journal |last1=Baily |first1=Francis |year=1843 |title=The Catalogues of Ptolemy, Ulugh Beigh, Tycho Brahe, Halley, Hevelius, deduced from the best authorities. |quote = With various notes and corrections, and a preface to each catalogue. To which is added the synonym of each star, in the catalogues or Flamsteed of Lacaille, as far as the same can be ascertained. |journal=[[Memoirs of the Royal Astronomical Society]] |volume=13 |pages=1 |bibcode=1843MmRAS..13....1B}}</ref><ref>{{cite book |first=Martin |last = Rees |date=17 September 2012 |title=Universe: The definitive visual guide |publisher=DK Publishing |isbn=978-1-4654-1114-3 |page=252 |url=https://books.google.com/books?id=CqrWEBWPfYoC }}</ref><ref name=Kunitx-Smart-2006>{{cite book |first1=Paul |last1=Kunitzsch |first2=Tim |last2=Smart |year=2006 |title=A Dictionary of Modern Star Names: A short guide to 254 star names and their derivations |publisher=Sky Pub. |isbn=978-1-931559-44-7 |page=27 |url=https://books.google.com/books?id=XVspPwAACAAJ}}</ref><ref>{{cite book |first=James B. |last=Kaler |date=7 May 2006 |title=The Hundred Greatest Stars |publisher=Springer Science & Business Media |isbn=978-0-387-21625-6 |page=15 |url=https://books.google.com/books?id=jmoQBwAAQBAJ }}</ref>{{efn| Spellings include Rigjl Kentaurus,<ref>{{cite book |author-link = Thomas Hyde |last = Hyde |first = T. |year = 1665 |section = Ulugh Beighi Tabulae Stellarum Fixarum |title = Tabulae Long. ac Lat. Stellarum Fixarum ex Observatione Ulugh Beighi |place = Oxford, UK |pages = 142, 67}}</ref> Portuguese Riguel Kentaurus,<ref>{{cite book |last = da Silva Oliveira |first = R. |url = http://www.asterdomus.com.br/Artigo_crux_australis.htm |title = Crux Australis: o Cruzeiro do Sul |archive-url=https://web.archive.org/web/20131206102730/http://www.asterdomus.com.br/Artigo_crux_australis.htm |archive-date=6 December 2013}}</ref><ref>{{cite book |last = Artigos |title = Planetario Movel Inflavel AsterDomus |language = la }}</ref> }} An alternative name found in European sources, Toliman, is an approximation of the Arabic {{lang|ar|الظليمان|rtl=yes}} ''aẓ-Ẓalīmān'' (in older transcription, ''aṭ-Ṭhalīmān''), meaning 'the (two male) Ostriches', an appellation [[Zakariya al-Qazwini]] had applied to the pair of stars [[Lambda Sagittarii|Lambda]] and [[Mu Sagittarii]]; it was often unclear on old star maps which name was intended to go with which star (or stars), and the referents changed over time.<ref>{{cite encyclopedia |script-title = ar: ظليم ذ |title = zalim dh |editor-first = Edward William |editor-last = Lane |dictionary = An Arabic–English Lexicon }}</ref> The name Toliman originates with [[Jacobus Golius|Jacob Golius]]' 1669 edition of [[Al-Farghani]]'s ''Compendium''. Tolimân is Golius' Latinisation of the Arabic name {{lang|ar| الظلمان |rtl=yes}} {{lang|ar-Latn|al-Ẓulmān}} "the ostriches", the name of an asterism of which Alpha Centauri formed the main star.<ref>{{cite journal |last1=Kunitzsch |first1=P. |year=1976 |title=Naturwissenschaft und Philologie: Die arabischen Elemente in der Nomenklatur und Terminologie der Himmelskunde |journal=Die Sterne |volume=52 |pages=218 |doi=10.1515/islm.1975.52.2.263 |s2cid=162297139 |bibcode=1976Stern..52..218K }}</ref><ref>{{cite journal |last1=Hermelink |first1=H. |last2=Kunitzsch |first2=Paul |year=1961 |title=Reviewed work: ''Arabische Sternnamen in Europa'', Paul Kunitzsch |type=book review |journal=Journal of the American Oriental Society |volume=81 |issue=3 |pages=309–312 |doi=10.2307/595661 |jstor=595661}}</ref><ref>{{cite book |first1=Aḥmad |last1=ibn Muḥammad al-Fargānī |first2=Jakob |last2=Golius |year=1669 |title=Muhammedis fil. Ketiri Ferganensis, qui vulgo Alfraganus dicitur, Elementa astronomica, Arabicè & Latinè. Cum notis ad res exoticas sive Orientales, quae in iis occurrunt. |language=la |trans-title = Muhammedis son of Ketiri Ferganensis, who is commonly called al-Fraganus, Astronomical Elements, Arabic and Latin. With notes to the exotic or oriental things that occur in them. |series = Opera Jacobi Golii |publisher=apud Johannem Jansonium à Waasberge, & viduam Elizei Weyerstraet |page=76 |url=https://books.google.com/books?id=OvWTSYvB0TYC&pg=PA76}}</ref><ref>{{cite book |first=Fred |last=Schaaf |date=31 March 2008 |title=The Brightest Stars: Discovering the universe through the sky's most brilliant stars |publisher=Wiley |isbn=978-0-470-24917-8 |page=122 |bibcode=2008bsdu.book.....S |url=https://books.google.com/books?id=9LT1q0Il3-YC }}</ref> {{nobr|α Centauri C}} was discovered in 1915 by [[Robert T. A. Innes]],<ref name=Innes1915>{{cite journal |last1=Innes |first1=R.T.A. |author1-link = Robert T. A. Innes |date=October 1915 |title=A faint star of large proper motion |journal=Circular of the Union Observatory Johannesburg |volume=30 |pages=235–236 |bibcode=1915CiUO...30..235I }}</ref> who suggested that it be named Proxima Centaurus,<ref name=Innes1917>{{cite journal |last1=Innes |first1=R.T.A. |author1-link = Robert T. A. Innes |date= September 1917 |title=Parallax of the faint proper motion star near alpha of Centaurus. 1900. R.A. 14h22m55s-0s 6t. Dec-62° 15'2 0'8 t |journal=Circular of the Union Observatory Johannesburg |volume=40 |pages=331–336 |bibcode=1917CiUO...40..331I}}</ref> {{ety|la ||the nearest [star] of [[Centaurus]]}}.<ref name=oxford2010>{{cite encyclopedia |editor1-first=Angus |editor1-last=Stevenson |year = 2010 |title = Proxima Centauri |dictionary = Oxford Dictionary of English |publisher=Oxford University Press |place = Oxford, UK |isbn=978-0-19-957112-3 |page=1431 |url=https://books.google.com/books?id=anecAQAAQBAJ&pg=PA1431}}</ref> The name Proxima Centauri later became more widely used and is now listed by the [[International Astronomical Union]] (IAU) as the approved proper name;<ref name=aj39_913_20>{{cite journal|last=Alden|first=Harold L.|title=Alpha and Proxima Centauri |journal=Astronomical Journal |year=1928 |volume=39 |issue=913 |pages=20–23 |doi=10.1086/104871 |bibcode=1928AJ.....39...20A |doi-access=free}}</ref><ref name=WGSNproxima>{{cite report |title=Bulletin of the IAU Working Group on Star Names |number = 2 |date=October 2016 |publisher=[[International Astronomical Union]] |url=https://www.iau.org/static/science/scientific_bodies/working_groups/280/WGSN_bulletin2.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.iau.org/static/science/scientific_bodies/working_groups/280/WGSN_bulletin2.pdf |archive-date=2022-10-09 |url-status=live |access-date=2019-05-29}}</ref> it is frequently abbreviated to Proxima. In 2016, the [[IAU Working Group on Star Names|Working Group on Star Names]] of the IAU,<ref name=WGSN>{{cite report |title=IAU Working Group on Star Names (WGSN) |year=2016 |publisher=[[International Astronomical Union]] |url=https://www.iau.org/science/scientific_bodies/working_groups/280/ |access-date=22 May 2016 |archive-date=10 June 2016 |archive-url=https://web.archive.org/web/20160610172014/https://www.iau.org/science/scientific_bodies/working_groups/280/ |url-status=dead }}</ref> having decided to attribute proper names to individual component stars rather than to [[multiple star|multiple systems]],<ref name=TriRpt18>{{cite report |title=WG Triennial Report |year = 2015–2018 |department = Star Names |page=5 |series=IAU Working Group on Star Names (WGSN) |publisher=[[International Astronomical Union]] |url=https://www.iau.org/static/science/scientific_bodies/working_groups/280/wg-starnames-triennial-report-2015-2018.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://www.iau.org/static/science/scientific_bodies/working_groups/280/wg-starnames-triennial-report-2015-2018.pdf |archive-date=2022-10-09 |url-status=live |access-date=14 July 2018}}</ref> approved the name Rigil Kentaurus ({{IPAc-en|ˈ|r|aɪ|dʒ|əl|_|k|ɛ|n|ˈ|t|ɔːr|ə|s}}) as being restricted to {{nobr|α Centauri A}} and the name Proxima Centauri ({{IPAc-en|ˈ|p|r|ɒ|k|s|ɪ|m|ə|_|s|ɛ|n|ˈ|t|ɔːr|aɪ}}) for {{nobr|α Centauri C.}}<ref name="IAU-LSN">{{cite web|url=https://www.iau.org/public/themes/naming_stars/|title=Naming Stars|publisher=[[International Astronomical Union]]|access-date=16 December 2017|archive-date=11 April 2020|archive-url=https://web.archive.org/web/20200411104839/https://www.iau.org/public/themes/naming_stars/|url-status=dead}}</ref> On 10 August 2018, the [[International Astronomical Union|IAU]] approved the name Toliman ({{IPAc-en|ˈ|t|ɒ|l|ɪ|m|æ|n}}) for {{nobr|α Centauri B.}}<ref name="IAU-CSN">{{cite report |title=IAU Catalog of Star Names |publisher=[[International Astronomical Union]] |url=http://www.pas.rochester.edu/~emamajek/WGSN/IAU-CSN.txt |access-date=2018-09-17}}</ref> === Other names === During the 19th century, the northern amateur popularist E.H. Burritt used the now-obscure name Bungula ({{IPAc-en|'|b|V|N|g|juː|l|@}}).<ref>{{cite book |first=Elijah Hinsdale |last=Burritt |year=1850 |title=Atlas: Designed to illustrate the geography of the heavens |publisher=F. J. Huntington |url=https://books.google.com/books?id=PHdtuwEACAAJ }}</ref> Its origin is not known, but it may have been coined from the Greek letter [[beta]] ({{mvar|β}}) and Latin {{lang|la|ungula}} 'hoof', originally for [[Beta Centauri]] (the other hoof).<ref name=Allen/><ref name=Kunitx-Smart-2006/> In [[Chinese astronomy]], {{lang|zh|南門}} ''Nán Mén'', meaning [[Horn (Chinese constellation)|Southern Gate]], refers to an [[Asterism (astronomy)|asterism]] consisting of Alpha Centauri and [[Epsilon Centauri|Epsilon Centauri]]. Consequently, the [[Chinese star names|Chinese name]] for Alpha Centauri itself is {{lang|zh|南門二}} ''Nán Mén Èr'', the Second Star of the Southern Gate.<ref>{{in lang|zh}} [ AEEA (Activities of Exhibition and Education in Astronomy) 天文教育資訊網 2006 年 6 月 27 日]</ref> To the Indigenous [[Wergaia|Boorong]] people of northwestern [[Victoria (Australia)|Victoria]] in Australia, Alpha Centauri and [[Beta Centauri]] are Bermbermgle,<ref name=hamacher>{{cite journal |last1=Hamacher |first1= Duane W.|last2=Frew |first2= David J.|year=2010|title=An Aboriginal Australian Record of the Great Eruption of Eta Carinae|journal=Journal of Astronomical History & Heritage|volume=13|issue=3 |pages=220–234|doi= 10.3724/SP.J.1440-2807.2010.03.06|arxiv=1010.4610|bibcode=2010JAHH...13..220H|s2cid= 118454721}}</ref> two brothers noted for their courage and destructiveness, who speared and killed Tchingal "The Emu" (the [[Coalsack Nebula]]).<ref name=stanbridge>{{cite journal|last=Stanbridge |first= W. M.|year=1857|title=On the Astronomy and Mythology of the Aboriginies of Victoria|journal=Transactions Philosophical Institute Victoria|volume=2|pages=137–140}}</ref> The form in [[Wergaia|Wotjobaluk]] is Bram-bram-bult.<ref name=hamacher/> == Observation == {{Location map |100x100 | AlternativeMap = Position Alpha Cen.png | caption = Location of {{nobr|α Cen}} in Centaurus | width = 280 | lat = 17 | long = 24 | mark = Cercle rouge 100%.svg | marksize=20 |lat_deg=|lon_deg=| float = left }} To the naked eye, {{nobr|α Centauri AB}} appear to be a single star, the [[List of stars in Centaurus|brightest in the southern constellation of Centaurus]].<ref name=Moore-2002>{{cite book |editor1-last=Moore |editor1-first=Patrick |year=2002 |title=Astronomy Encyclopedia |publisher=Philip's |isbn=978-0-540-07863-9 |url=https://books.google.com/books?id=uJxWDwAAQBAJ&pg=PP5 }}{{dead link|date=May 2024}}</ref> Their apparent angular separation varies over about 80 years between 2 and 22 [[arcsecond]]s (the [[naked eye]] has a resolution of 60 arcsec),<ref>{{cite book |first=Johannes Ebenhaezer |last=van Zyl |year=1996 |title=Unveiling the Universe: An introduction to astronomy |publisher=Springer |isbn=978-3-540-76023-8 |url-access=registration |url=https://archive.org/details/unveilingunivers01vanz }}</ref> but through much of the orbit, both are easily resolved in binoculars or small telescopes.<ref name=AOST2a>{{cite book |last1=Hartung |first1=E.J. |last2=Frew |first2= David |last3=Malin |first3= David |year=1994 |title=Astronomical Objects for Southern Telescopes |publisher=Cambridge University Press}}</ref> At −0.27 [[apparent magnitude]] (combined for A and B magnitudes {{crossreference|1=(see {{Slink|Apparent magnitude|Magnitude addition}})}}), Alpha Centauri is a [[first-magnitude star]] and is fainter only than [[Sirius]] and [[Canopus]].<ref name=Moore-2002/> It is the outer star of The Pointers or The Southern Pointers,<ref name=AOST2a/> so called because the line through [[Beta Centauri]] (Hadar/Agena),<ref name=NortonSA>{{cite book |last1=Norton |first1=A.P. |first2=Ed. I. |last2=Ridpath |year=1986 |title=Norton's 2000.0: Star Atlas and Reference Handbook|publisher=Longman Scientific and Technical|pages=39–40}}</ref> some 4.5° west,<ref name=AOST2a/> points to the constellation [[Crux]]—the Southern Cross.<ref name=AOST2a/><ref name="AOST2">{{cite book|last1=Hartung |first1=E.J. |last2=Frew |first2=D. |last3=Malin |first3=D. |year=1994 |title=Astronomical Objects for Southern Telescopes |page=194 |publisher=Melbourne University Press|isbn=978-0-522-84553-2 |url=https://books.google.com/books?id=FTsDDQAAQBAJ&pg=PT3}}</ref> The Pointers easily distinguish the true Southern Cross from the fainter [[asterism (astronomy)|asterism]] known as the [[False Cross]].<ref>{{cite book |last=Mitton |first=Jacquelin |year=1993 |title=The Penguin Dictionary of Astronomy |url=https://archive.org/details/penguindictionar00mitt |url-access=limited |page=[https://archive.org/details/penguindictionar00mitt/page/148 148] |publisher=Penguin Books |isbn=9780140512267}}</ref> South of about 29° South latitude, {{nobr|α Cen}} is [[Circumpolar star|circumpolar]] and never sets below the horizon.{{efn| This is calculated for a fixed latitude by knowing the star's [[declination]] ({{mvar|δ}}) using the formulae (90°+ {{mvar|δ}}). {{nobr|α Centauri's}} declination is −60° 50′, so the observed [[latitude]] where the star is circumpolar will be south of −29° 10′ South or 29°. Similarly, the place where Alpha Centauri never rises for northern observers is north of the latitude (90°+ {{mvar|δ}}) N or +29° North. }} North of about 29° N latitude, Alpha Centauri never rises. Alpha Centauri lies close to the southern horizon when viewed from latitude 29° N to the [[equator]] (close to [[Hermosillo]] and [[Chihuahua City]] in [[Mexico]]; [[Galveston, Texas]]; [[Ocala, Florida]]; and [[Lanzarote]], the [[Canary Islands]] of [[Spain]]), but only for a short time around its [[culmination]].<ref name=NortonSA/> The star culminates each year at local midnight on 24 April and at local 9 p.m. on 8 June.<ref name=NortonSA/><ref>{{cite web |last=James |first= Andrew |title=Culmination Times |department = The Constellations, Part 2 |website=Southern Astronomical Delights (southastrodel.com) |location=Sydney, New South Wales |url=http://www.southastrodel.com/Page20502.htm |access-date=6 August 2008 }}</ref> As seen from Earth, Proxima Centauri is 2.2° southwest from {{nobr|α Centauri AB;}} this distance is about four times the [[angular diameter]] of the [[Moon]].<ref name=Matt93>{{cite journal |last1=Matthews |first1= R.A.J. |last2=Gilmore |first2= Gerard |year=1993 |title=Is Proxima really in orbit about {{nobr|α Cen A/B ?}} |journal=Monthly Notices of the Royal Astronomical Society |volume=261|pages=L5–L7|bibcode=1993MNRAS.261L...5M |doi=10.1093/mnras/261.1.l5 |doi-access=free}}</ref> Proxima Centauri appears as a deep-red star of a typical apparent magnitude of 11.1 in a sparsely populated star field, requiring moderately sized telescopes to be seen. Listed as V645 Cen in the ''[[General Catalogue of Variable Stars]]'', version 4.2, this [[UV Ceti star]] or "flare star" can unexpectedly brighten rapidly by as much as 0.6 [[Magnitude (astronomy)|magnitude]] at visual wavelengths, then fade after only a few minutes.<ref name=bendict1998>{{cite conference |last1=Benedict |first1=G. Fritz |last2=McArthur |first2=Barbara |last3=Nelan |first3=E. |last4=Story |first4=D. |last5=Whipple |first5=A.L. |last6=Shelus |first6=P.J. |last7=Jefferys |first7=W. H.|last8=Hemenway|first8=P.D. |last9=Franz |first9=Otto G. |last10=Wasserman |first10=L.H. |last11=van Altena |first11=W. |last12=Fredrick |first12=L.W. |display-authors=6 |year=1998 |title=Proxima Centauri: Time-resolved astrometry of a flare site using HST fine guidance sensor 3 |editor1-first=R.A. |editor1-last=Donahue |editor2-first=J.A. |editor2-last=Bookbinder |conference=The Tenth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun |series = [[Astronomical Society of the Pacific|ASP]] Conference Series |volume = 154 |page = 1212 |bibcode=1998ASPC..154.1212B}}</ref> Some amateur and professional astronomers regularly monitor for outbursts using either optical or radio telescopes.<ref>{{cite journal |last=Page |first= A.A. |year=1982 |title=Mount Tamborine Observatory |journal=International Amateur-Professional Photoelectric Photometry Communication |volume=10|page=26|bibcode=1982IAPPP..10...26P}}</ref> In August 2015, the largest recorded flares of the star occurred, with the star becoming 8.3 times brighter than normal on 13 August, in the [[Apparent magnitude#Standard reference values|B band (blue light region)]].<ref name="proximaflare">{{cite web |title=Light curve generator (LCG) |website = [[American Association of Variable Star Observers]] (aavso.org) |url=https://www.aavso.org/lcg/plot?auid=000-BCV-333&starname=V645%20CEN&lastdays=200&start=2457230&stop=2457270&obscode=&obscode_symbol=2&obstotals=yes&calendar=calendar&forcetics=&pointsize=1&width=800&height=450&mag1=&mag2=&mean=&vmean=&grid=on&visual=on&uband=on&bband=on&v=on |access-date=7 June 2017 |url-status=dead |archive-url=https://web.archive.org/web/20200725055311/https://www.aavso.org/lcg/plot?auid=000-BCV-333&starname=V645%20CEN&lastdays=200&start=2457230&stop=2457270&obscode=&obscode_symbol=2&obstotals=yes&calendar=calendar&forcetics=&pointsize=1&width=800&height=450&mag1=&mag2=&mean=&vmean=&grid=on&visual=on&uband=on&bband=on&v=on |archive-date=25 July 2020 }}</ref> === Observational history === [[File:The Very Large Telescope and the star system Alpha Centauri.jpg|thumb|upright=1.2|The [[Very Large Telescope]] open to the night sky, with the Milky Way running diagonally across the sky above it and many southern stars and constellations labelled and connected by lines, including Alpha Centauri and the not visible Proxima Centauri.|alt=Image of a very large telescope dome open to the night sky, with the Milky Way running diagonally across the sky above it and many southern stars and constellations labelled and connected by lines]] Alpha Centauri is listed in the 2nd century star catalog appended to [[Claudius Ptolemaeus|Ptolemy]]'s ''[[Almagest]]''. Ptolemy gave its [[ecliptic coordinates]], but texts differ as to whether the ecliptic latitude reads {{nobr|44° 10′ South}} or {{nobr|41° 10′ South}}.<ref>{{cite book|url=https://isidore.co/calibre/get/pdf/Ptolemy%26%2339%3Bs%20Almagest%20-%20Ptolemy%2C%20Claudius%20%26amp%3B%20Toomer%2C%20G.%20J__5114.pdf |archive-url=https://ghostarchive.org/archive/20221009/https://isidore.co/calibre/get/pdf/Ptolemy%26%2339%3Bs%20Almagest%20-%20Ptolemy%2C%20Claudius%20%26amp%3B%20Toomer%2C%20G.%20J__5114.pdf |archive-date=2022-10-09 |url-status=live|title=Ptolemy's Almagest |publisher=Gerald Duckworth & Co.|location=London|first=Claudius|last=Ptolemaeus|translator-first=G. J.|translator-last=Toomer|page=368, note 136|date=1984|isbn=978-0-7156-1588-1|access-date=22 December 2017}}{{dead link|date=June 2021|bot=medic}}{{cbignore|bot=medic}}</ref> (Presently the ecliptic latitude is {{nowrap|43.5° South}}, but it has decreased by a fraction of a degree since [[Ptolemy]]'s time due to [[proper motion]].) In Ptolemy's time, Alpha Centauri was visible from [[Alexandria, Egypt]], at {{nobr|31° N,}}<!-- Its southerly declination was about –53° S --> but, due to [[Precession of the equinoxes|precession]], its declination is now {{nobr|–60° 51′ South}}, and it can no longer be seen at that latitude. English explorer [[Robert Hues]] brought Alpha Centauri to the attention of European observers in his 1592 work ''Tractatus de Globis'', along with Canopus and [[Achernar]], noting: {{Blockquote|Now, therefore, there are but three [[First magnitude star|Stars of the first magnitude]] that I could perceive in all those parts which are never seene here in [[England]]. The first of these is that bright Star in the sterne of [[Argo Navis|Argo]] which they call Canobus [Canopus]. The second [Achernar] is in the end of [[Eridanus (constellation)|Eridanus]]. The third [Alpha Centauri] is in the right foote of the [[Centaurus|Centaure]].<ref name="knobel">{{cite journal |last=Knobel |first= Edward B. |author-link=Edward Knobel |year=1917 |title=On Frederick de Houtman's ''Catalogue of Southern Stars'', and the origin of the southern constellations |journal=Monthly Notices of the Royal Astronomical Society |volume=77 |issue=5|pages=414–432 [416] |bibcode=1917MNRAS..77..414K |doi=10.1093/mnras/77.5.414 |doi-access=free}}</ref>}} The [[Binary star|binary]] nature of Alpha Centauri AB was recognized in December 1689 by Jean Richaud, while observing a passing [[comet]] from his station in [[Puducherry (union territory)|Puducherry]]. Alpha Centauri was only the third binary star to be discovered, preceded by [[Mizar|Mizar AB]] and [[Acrux]].<ref name=KameswaraRao1984>{{cite journal |last1=Kameswara-Rao |first1=N. |last2=Vagiswari |first2=A. |last3=Louis |first3=C. |year=1984 |title=Father J. Richaud and early telescope observations in India |journal=Bulletin of the Astronomical Society of India |volume=12 |page=81 |bibcode=1984BASI...12...81K}}</ref> The large proper motion of Alpha Centauri AB was discovered by [[Manuel John Johnson]], observing from [[Saint Helena]], who informed [[Thomas Henderson (astronomer)|Thomas Henderson]] at the [[Royal Observatory, Cape of Good Hope]] of it. The [[Parallax in astronomy|parallax]] of Alpha Centauri was subsequently determined by Henderson from many exacting positional observations of the AB system between April 1832 and May 1833. He withheld his results, however, because he suspected they were too large to be true, but eventually published them in 1839 after [[Friedrich Wilhelm Bessel|Bessel]] released his own accurately determined parallax for {{nobr|[[61 Cygni]]}} in 1838.<ref name="autogenerated345">{{cite book |first=Anton |last=Pannekoek |year=1989 |orig-year=1961 |title=A History of Astronomy |edition=reprint |pages=345–346 |publisher=Dover |isbn=978-0-486-65994-7 |url=https://books.google.com/books?id=I1LGdDe0NYcC&pg=PA2 }}</ref> For this reason, Alpha Centauri is sometimes considered as the second star to have its distance measured because Henderson's work was not fully acknowledged at first.<ref name="autogenerated345"/> (The distance of Alpha Centauri from the Earth is now reckoned at 4.396 [[light-year]]s or {{cvt|4.396|ly|km|disp=out}}.) [[File:South celestial pole.png|thumb|Alpha Centauri (Rigel Kentaurus) around the [[South celestial pole]]]] [[John Herschel]] made the first [[Micrometer (device)|micrometrical]] observations in 1834.<ref name=JHerschel1847>{{cite book |last=Herschel |first=J.F.W. |author-link=John Herschel |year=1847 |title=Results of astronomical observations made during the years 1834, 5, 6, 7, 8 at the Cape of Good Hope; being the completion of a telescopic survey of the whole surface of the visible heavens, commenced in 1825 |publisher=Smith, Elder and Co, London|bibcode=1847raom.book.....H}}</ref> Since the early 20th century, measures have been made with [[photographic plates]].<ref name="adsabs.harvard.edu">{{cite journal|last1=Kamper|first1=K. W. |last2=Wesselink |first2=A. J. |year=1978 |title=Alpha and Proxima Centauri |journal=Astronomical Journal|volume=83 |page=1653 |bibcode=1978AJ.....83.1653K |doi=10.1086/112378 |doi-access=free}}</ref> By 1926, [[William Stephen Finsen]] calculated the approximate [[Orbital elements|orbit elements]] close to those now accepted for this system.<ref name="Aitken"/> All future positions are now sufficiently accurate for visual observers to determine the relative places of the stars from a binary star [[ephemeris]].<ref>{{citation-attribution|1={{cite web|url=http://ad.usno.navy.mil/wds/orb6/orb6ephem.html|title=Sixth Catalogue of Orbits of Visual Binary Stars: Ephemeris (2008)|publisher=U.S. Naval Observatory|access-date=13 August 2008|archive-url=https://web.archive.org/web/20090113210000/http://ad.usno.navy.mil/wds/orb6/orb6ephem.html |archive-date=13 January 2009|url-status=dead}} }}</ref> Others, like D. Pourbaix (2002), have regularly refined the precision of new published orbital elements.<ref name="SixthCatOrbVisBin"/> [[Robert T. A. Innes]] discovered [[Proxima Centauri]] in 1915 by blinking photographic plates taken at different times during a [[proper motion]] survey. These showed large proper motion and parallax similar in both size and direction to those of {{nobr|α Centauri AB,}} which suggested that Proxima Centauri is part of the {{nobr|α Centauri}} system and slightly closer to Earth than {{nobr|α Centauri AB}}. As a result, Innes concluded that Proxima Centauri was the closest star to Earth yet discovered. == Location and motion == Alpha Centauri may be inside the [[G-cloud]] of the [[Local Bubble]],<ref>{{cite journal | last1=Linsky | first1=Jeffrey L. | last2=Redfield | first2=Seth | last3=Tilipman | first3=Dennis | date=November 2019 | title=The interface between the outer heliosphere and the inner local ISM: Morphology of the local interstellar cloud, its hydrogen hole, Strömgren shells, and <sup>60</sup>Fe accretion | journal=The Astrophysical Journal | volume=886 | issue=1 | id=41 | pages=19 | doi=10.3847/1538-4357/ab498a | doi-access=free | arxiv=1910.01243 | bibcode=2019ApJ...886...41L | s2cid=203642080 }}</ref> and its nearest known system is the binary [[brown dwarf]] system [[Luhman 16]], at {{convert|3.6|ly|pc|lk=on|abbr=off}} distance.<ref name=substellarcompanion>{{cite journal |last1=Boffin |first1=Henri M.J. |last2=Pourbaix |first2=D. |last3=Mužić |first3=K. |last4=Ivanov |first4=V.D. |last5=Kurtev |first5=R. |last6=Beletsky |first6=Y. |last7=Mehner|first7=A.|last8=Berger |first8=J.P. |last9=Girard |first9=J.H. |last10=Mawet |first10=D. |display-authors=6 |date=4 December 2013 |title=Possible astrometric discovery of a substellar companion to the closest binary brown dwarf system WISE J104915.57–531906.1 |journal=[[Astronomy and Astrophysics]] |volume=561 |pages=L4 |arxiv=1312.1303 |bibcode=2014A&A...561L...4B |doi=10.1051/0004-6361/201322975 |s2cid=33043358}}</ref>{{failed verification|date=May 2025}} === Historical distance estimates === :{| class="wikitable sortable mw-collapsible" |+ Alpha Centauri AB historical distance estimates |- ! rowspan="2" | Source ! rowspan="2" |Year ! rowspan="2" |Subject!! rowspan="2" | Parallax ([[milliarcsecond|mas]]) !! colspan="3" | Distance !! rowspan="2" | References |- ![[parsec]]s !! [[light-year]]s !! [[petametre]]s |- | H. Henderson || 1839 || AB || {{val|1160|110}} || {{val|0.86|0.09|0.07}} || 2.81 ± 0.53 || {{val|26.6|2.8|2.3}} ||<ref name="Henderson1839" /> |- | T. Henderson |1842 |AB | {{val|912.8|64}} | 1.10 ± 0.15 | 3.57 ± 0.5 | {{val|33.8|2.5|2.2}} |<ref>{{cite journal |last=Henderson|first=T.|title=The parallax of {{nobr|α Centauri,}} deduced from Mr. Maclear's observations at the Cape of Good Hope, in the years 1839 and 1840 |journal=Memoirs of the Royal Astronomical Society |volume=12 |pages=370–371 |year=1842 |bibcode=1842MmRAS..12..329H}}</ref> |- | Maclear |1851 |AB | {{val|918.7|34}} | {{val|1.09|0.04}} | {{val|3.55|0.14|0.13}} | 32.4 ± 2.5 |<ref>{{cite journal|last=Maclear|first=T.|title=Determination of the Parallax of α 1 and α2 Centauri, from Observations made at the Royal Observatory, Cape of Good Hope, in the Years 1842-3-4 and 1848 |journal=Memoirs of the Royal Astronomical Society|volume=20|page=98|year=1851|bibcode=1851MmRAS..20...70M}}</ref> |- | Moesta |1868 |AB | {{val|880|68}} | {{val|1.14|0.10|0.08}} | {{val|3.71|0.31|0.27}} | {{val|35.1|2.9|2.5}} |<ref>{{cite journal|last=Moesta|first=C. G.|title=Bestimmung der Parallaxe von α und β Centauri|trans-title=Determining the parallax of α and β Centauri|language=de|journal=Astronomische Nachrichten|year=1868 |volume=71|issue=8|pages=117–118|bibcode=1868AN.....71..113M|doi=10.1002/asna.18680710802|url=https://zenodo.org/record/1424671}}</ref> |- | Gill & Elkin |1885 |AB | {{val|750|10}} | {{val|1.333|0.018}} | {{val|4.35|0.06}} | {{val|41.1|0.6|0.5}} |<ref>{{cite journal|last1=Gill|first1=David|last2=Elkin|first2=W. L.|title=Heliometer-Determinations of Stellar Parallax in the Southern Hemisphere|journal=Memoirs of the Royal Astronomical Society|year=1885 |volume=48|page=188|bibcode=1885MmRAS..48....1G}}</ref> |- | Roberts |1895 |AB | {{val|710|50}} | 1.32 ± 0.2 | 4.29 ± 0.65 | {{val|43.5|3.3|2.9}} |<ref>{{cite journal|last=Roberts|first=Alex W.|title=Parallax of α Centauri from Meridian Observations 1879–1881|journal=Astronomische Nachrichten|year=1895|volume=139|issue=12|pages=189–190 |bibcode=1895AN....139..177R|doi=10.1002/asna.18961391202|url=https://zenodo.org/record/1424747}}</ref> |- | Woolley ''et al.'' |1970 |AB | {{val|743|7}} | {{val|1.346|0.013}} | {{val|4.39|0.04}} | {{val|41.5|0.4}} |<ref name="Woolley1970">{{cite journal|url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=V/32A&Woolley=559|title=Woolley 559|volume=5|page=ill|journal=Catalogue of Stars within 25 Parsecs of the Sun |last1=Woolley|first1=R.|last2=Epps|first2=E. A.|last3=Penston|first3=M. J.|last4=Pocock|first4=S. B.|year=1970|bibcode=1970ROAn....5.....W|access-date=9 May 2014|archive-url=https://web.archive.org/web/20171008231243/http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=V%2F32A&Woolley=559|archive-date=8 October 2017|url-status=live}}</ref> |- | Gliese & Jahreiß |1991 |AB | {{val|749.0|4.7}} | {{val|1.335|0.008}} | {{val|4.355|0.027}} | {{val|41.20|0.26}} |<ref name="Gliese1991">{{cite web|url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=V/70A&Name=Gl%20559|title=Gl 559|work=Preliminary Version of the Third Catalogue of Nearby Stars |publisher=Astronomische Rechen-Institut|last1=Gliese|first1=W.|last2=Jahreiß|first2=H.|year=1991|access-date=9 May 2014}}</ref> |- | van Altena ''et al.'' | 1995 | AB | {{val|749.9|5.4}} | {{val|1.334|0.010}} | {{val|4.349|0.032|0.031}} | {{val|41.15|0.30|0.29}} |<ref>{{cite report |last1=van Altena |first1=W.F. |last2=Lee |first2=J.T. |last3=Hoffleit |first3=E.D. |year=1995 |section=GCTP 3309 |title=The General Catalogue of Trigonometric Stellar Parallaxes |publisher=Yale University Observatory |edition=4th |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/238A/picat&GCTP=3309 |access-date=9 May 2014}}</ref> |- | Perryman ''et al.'' | 1997 | AB | {{val|742.12|1.40}} | {{val|1.3475|0.0025}} | {{val|4.395|0.008}} | {{val|41.58|0.08}}<ref name=Perryman1997_tyc_A> {{cite report |last=Perryman |first= |year=1997 |display-authors=etal |title=HIP 71683 |series=The Hipparcos and Tycho Catalogues |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/239/tyc_main&HIP=71683 |access-date=9 May 2014 }} </ref><ref name=Perryman1997_tyc_B> {{cite report |last=Perryman |first= |year=1997 |display-authors=etal |title=HIP 71681 |series=The Hipparcos and Tycho Catalogues |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/239/tyc_main&HIP=71681 |access-date=9 May 2014}}</ref> |- | Söderhjelm | 1999 | AB | {{val|747.1|1.2}} | {{val|1.3385|0.0022|0.0021}} | {{val|4.366|0.007}} | {{val|41.30|0.07}} |<ref>{{cite report |last =Söderhjelm |first =Staffan |year=1999 |title=HIP 71683 |section=Visual binary orbits and masses post Hipparcos |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=J/A+A/341/121&HIP=71683 |access-date=9 May 2014}}</ref> |- |rowspan="2"| van Leeuwen |rowspan="2"| 2007 | A | {{val|754.81|4.11}} | {{val|1.325|0.007}} | {{val|4.321|0.024|0.023}} | {{val|40.88|0.22}} |<ref>{{cite report |last=van Leeuwen |first=Floor |year=2007 |title=HIP 71683 |section=Validation of the new Hipparcos reduction |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/311&HIP=71683}}</ref> |- | B | {{val|796.92|25.90}} | {{val|1.25|0.04}} | {{val|4.09|0.14|0.13}} | 37.5 ± 2.5 |<ref>{{cite report |last=van Leeuwen |first=Floor |year=2007 |title=HIP 71681 |section=Validation of the new Hipparcos reduction |url=http://webviz.u-strasbg.fr/viz-bin/VizieR-5?-source=I/311&HIP=71681 }}</ref> |- | RECONS TOP100 |2012 |AB | {{val|747.23|1.17}}{{efn| Weighted parallax based on parallaxes from {{harvp|van Altena|Lee||Hoffleit|1995}} and {{harvp|Söderhjelm|1999}}. }} | {{val|1.3383|0.0021}} | {{val|4.365|0.007}} | {{val|41.29|0.06}} |<ref name="RECONS">{{cite report |series=Research Consortium on Nearby Stars |publisher=Georgia State University |date=7 September 2007 |title=The one hundred nearest star systems |url=http://www.astro.gsu.edu/RECONS/TOP100.posted.htm |access-date=2 December 2014 |url-status=live |archive-url=https://web.archive.org/web/20071112173559/http://www.chara.gsu.edu/RECONS/TOP100.posted.htm |archive-date=12 November 2007 }}</ref> |} === Kinematics === [[File:Angular map of fusors around Sol within 9ly (large).png|thumb|upright=1.2|Alpha Centauri (with unlabeled Proxima Centauri) on a radar map of all known stellar and [[substellar]] objects within 9 light years (ly), arranged clockwise in [[hour angle|hours]] of [[right ascension]], and marked by distance (▬) and position (◆). Distances are marked outward from the [[Sun|Sun (Sol)]], with concentric circles indicating the distance in one ly steps. Positions are marked inward from their distance markings, connected by lines according to their [[declination]]s (doted when positive), representing the [[Circular arc|arcs]] of the declinations viewed edge-on.]] All components of {{nobr|α Centauri}} display significant [[proper motion]] against the background sky. Over centuries, this causes their apparent positions to slowly change.<ref>{{cite web |publisher=ESA |website=Hipparcos mission website |url=http://www.rssd.esa.int/index.php?project=HIPPARCOS&page=high_p |title=High-Proper Motion Stars (2004) }}</ref> Proper motion was unknown to ancient astronomers. Most assumed that the stars were permanently fixed on the [[celestial sphere]], as stated in the works of the philosopher Aristotle.<ref>{{cite web |last=Aristotle |url=https://ebooks.adelaide.edu.au/a/aristotle/heavens/book2.html |title=De Caelo |trans-title = On the Heavens |at=Book II Part 11 |publication-date = 2004 |access-date=6 August 2008|archive-url=https://web.archive.org/web/20080823061709/http://ebooks.adelaide.edu.au/a/aristotle/heavens/book2.html|archive-date=23 August 2008|url-status=dead}}</ref> In 1718, [[Edmond Halley]] found that some stars had significantly moved from their ancient [[astrometric]] positions.<ref name=berry>{{cite book |first=Arthur |last=Berry |title=A Short History of Astronomy|url=https://books.google.com/books?id=QBJcswEACAAJ|date=6 February 2018|publisher=Creative Media Partners, LLC|isbn=978-1-376-81951-9|pages=357–358}}</ref> In the 1830s, [[Thomas Henderson (astronomer)|Thomas Henderson]] discovered the true distance to {{nobr|α Centauri}} by analysing his many astrometric mural circle observations.<ref name="Henderson1839">{{cite journal|last=Henderson |first= H.|year=1839|title=On the parallax of α Centauri|journal=Monthly Notices of the Royal Astronomical Society|volume=4|issue=19|pages=168–169|bibcode=1839MNRAS...4..168H |doi=10.1093/mnras/4.19.168|url=https://zenodo.org/record/1431843|doi-access=free}}</ref><ref>{{cite web |publisher=Astronomical Society of South Africa |url=http://www.saao.ac.za/assa/html/his-astr-henderson_t.html |title=Henderson, Thomas [FRS] |year = 2008 |url-status=dead |archive-url=https://archive.today/20120909154524/http://www.saao.ac.za/assa/html/his-astr-henderson_t.html|archive-date=9 September 2012}}</ref> He then realised this system also likely had a high proper motion.<ref>{{cite book |first=Anton |last=Pannekoek |year=1989 |title=A History of Astronomy |url=https://books.google.com/books?id=I1LGdDe0NYcC |publisher=Courier Corporation|isbn=978-0-486-65994-7 |page=333}}</ref><ref>{{cite journal |last=Maclear |first= M. |year=1851 |title=Determination of parallax of α{{sup|1}} and {{nobr|α{{sup|2}} Centauri}} |journal=Astronomische Nachrichten |volume=32 |issue=16 |pages=243–244 |doi=10.1002/asna.18510321606 |bibcode=1851MNRAS..11..131M }}</ref><ref name=Aitken/> In this case, the apparent stellar motion was found using [[Nicolas Louis de Lacaille]]'s astrometric observations of 1751–1752,<ref>{{cite book |first1=de la Caillé |last1=N. L. |translator=Raven-Hart, R. |year=1976 |title=Travels at the Cape, 1751–1753: An annotated translation of journal historique du voyage fait au Cap de Bonne-Espérance |publisher=Cape Town |isbn=978-0-86961-068-8 }}</ref> by the observed differences between the two measured positions in different epochs. Calculated proper motion of the centre of mass for {{nobr|α Centauri AB}} is about 3620 mas/y (milliarcseconds per year) toward the west and 694 mas/y toward the north, giving an overall motion of 3686 mas/y in a direction 11° north of west.<ref name=Kervella2016>{{cite journal|first1=Pierre |last1=Kervella |display-authors=etal |year=2016 |title=Close stellar conjunctions of {{nobr|α Centauri A}} and B until 2050 An {{mvar|m}}{{sub|K}} = 7.8 star may enter the Einstein ring of {{nobr|α Cen A}} |journal=Astronomy & Astrophysics |volume=594 |issue=107 |page=A107 |arxiv=1610.06079 |doi=10.1051/0004-6361/201629201 |bibcode=2016A&A...594A.107K |s2cid=55865290}}</ref>{{efn| Proper motions are expressed in smaller angular units than arcsec, being measured in milliarcsec (mas.) (thousandths of an arcsec). Negative values for proper motion in RA indicate the sky motion is from east to west, and in declination north to south. }} The motion of the centre of mass is about 6.1 [[arcmin]] each century, or 1.02[[degree (angle)|°]] each millennium. The speed in the western direction is {{cvt|23.0|km/s}} and in the northerly direction {{cvt|4.4|km/s}}. Using [[spectroscopy]] the mean radial velocity has been determined to be around {{cvt|22.4|km/s}} towards the Solar System.<ref name=Kervella2016/> This gives a speed with respect to the Sun of {{cvt|32.4|km/s}}, very close to the peak in the distribution of speeds of nearby stars.<ref>{{cite arXiv |last1=Marshall Eubanks |first1=T. |last2=Hein |first2=Andreas M. |last3=Lingam |first3=Manasvi |last4=Hibberd |first4=Adam |last5=Fries |first5=Dan |last6=Perakis |first6=Nikolaos |last7=Kennedy |first7=Robert |last8=Blase |first8=W.P. |last9=Schneider|first9=Jean |display-authors=6 |year=2021 |title=Interstellar objects in the Solar System: 1. Isotropic kinematics from the Gaia early data release 3 |class=astro-ph.EP |eprint=2103.03289}}</ref> Since {{nobr|α Centauri AB}} is almost exactly in the plane of the [[Milky Way]] as viewed from Earth, many stars appear behind it. In early May 2028, {{nobr|α Centauri A}} will pass between the Earth and a distant red star, when there is a 45% probability that an [[Einstein ring]] will be observed. Other [[conjunction (astronomy)|conjunction]]s will also occur in the coming decades, allowing accurate measurement of proper motions and possibly giving information on planets.<ref name=Kervella2016/> ==== Predicted future changes ==== [[File:Near-stars-past-future-en.svg|thumb|upright=1.2|left|Distances of the [[List of nearest stars|nearest stars]] from 20,000 years ago until 80,000 years in the future{{citation needed|date=January 2025}}|alt=Line graph with x-axis in thousands of years and y-axis in light years, the lines on the graph being labelled with the names of stars.]] [[File:Alpha Cen proper motions.gif|thumb|upright=1.2|Animation showing motion of {{nobr|α Centauri}} through the sky. (The other stars are held fixed for didactic reasons.) "Oggi" means today; "anni" means years.|alt=Animated image of a sky chart of the southern celestial hemisphere labelled with years.]] Based on the system's common proper motion and radial velocities, {{nobr|α Centauri}} will continue to change its position in the sky significantly and will gradually brighten. For example, in about 6,200 [[Common Era|CE]], α Centauri's true motion will cause an extremely rare [[First-magnitude star|first-magnitude]] stellar conjunction with [[Beta Centauri]], forming a brilliant optical [[double star]] in the southern sky.<ref name=AOST2/> It will then pass just north of the Southern Cross or [[Crux]], before moving northwest and up towards the present [[celestial equator]] and away from the [[galactic plane]]. By about 26,700 [[Common Era|CE]], in the present-day constellation of [[Hydra (constellation)|Hydra]], {{nobr|α Centauri}} will reach perihelion at {{cvt|0.90|pc|ly|lk=on|disp=or}} away,<ref name=Matthews>{{cite journal |last=Matthews |first= R.A.J. |year=1994|title=The close approach of stars in the Solar neighbourhood |journal=Quarterly Journal of the Royal Astronomical Society |volume=35|pages=1–8|bibcode=1994QJRAS..35....1M}}</ref> though later calculations suggest that this will occur in 27,000 AD.<ref name=Bailer2015>{{cite journal |first=Bailer-Jones |last=C.A.L. |year=2015|title=Close encounters of the stellar kind |journal=Astronomy and Astrophysics |volume=575 |pages=A35–A48 |bibcode=2015A&A...575A..35B |arxiv=1412.3648 |doi=10.1051/0004-6361/201425221 |s2cid=59039482}}</ref> At its nearest approach, α Centauri will attain a maximum [[apparent magnitude]] of −0.86, comparable to present-day magnitude of [[Canopus]], but it will still not surpass that of [[Sirius]], which will brighten incrementally over the next 60,000 years, and will continue to be the brightest star as seen from Earth (other than the Sun) for the next 210,000 years.<ref>{{cite magazine |title={{grey|[no title cited]}} |magazine=[[Sky and Telescope]] |date = April 1998 |page=60 |quote= Calculation based on computations from HIPPARCOS data. }}</ref> == Stellar system == Alpha Centauri is a triple star system, with its two main stars, A and B, together comprising a [[Binary star|binary]] component. The ''AB'' designation, or older ''A×B'', denotes the mass centre of a main binary system relative to companion star(s) in a multiple star system.<ref name=DoubleStarsHeintz>{{cite book |last=Heintz |first=W. D. |url=https://archive.org/details/DoubleStars |title=Double Stars |date=1978 |publisher=D. Reidel |isbn=978-90-277-0885-4 |page=[https://archive.org/details/DoubleStars/page/n27 19] }}{{dead link|date=September 2023}}</ref> ''AB-C'' refers to the component of Proxima Centauri in relation to the central binary, being the distance between the centre of mass and the outlying companion. Because the distance between Proxima (C) and either of Alpha Centauri A or B is similar, the AB binary system is sometimes treated as a single gravitational object.<ref name=wds1996>{{cite book |last1=Worley|first1=C.E. |last2=Douglass |first2= G.G. |year=1996 |title=Washington Visual Double Star Catalog, 1996.0 (WDS) |url=http://adc.gsfc.nasa.gov/adc-cgi/cat.pl?/catalogs/1/1237 |publisher=[[United States Naval Observatory]] |url-status=dead |archive-url=https://web.archive.org/web/20000422224338/http://adc.gsfc.nasa.gov/adc-cgi/cat.pl?%2Fcatalogs%2F1%2F1237 |archive-date=22 April 2000}}</ref> === Orbital properties === [[File:Orbit Alpha Centauri AB arcsec.png|thumb|upright=1.4|left|Apparent and true orbits of Alpha Centauri. The A component is held stationary, and the relative orbital motion of the B component is shown. The apparent orbit (thin ellipse) is the shape of the orbit as seen by an observer on Earth. The true orbit is the shape of the orbit viewed perpendicular to the plane of the orbital motion. According to the radial velocity versus time,<ref name="Pourbaix">{{cite journal |last=Pourbaix |first= D.|year=2002|title=Constraining the difference in convective blueshift between the components of alpha Centauri with precise radial velocities|journal=Astronomy and Astrophysics|volume=386|issue=1|pages=280–285|bibcode=2002A&A...386..280P|doi=10.1051/0004-6361:20020287|arxiv=astro-ph/0202400|s2cid=14308791|display-authors=et al.}}</ref> the radial separation of A and B along the line of sight had reached a maximum in 2007, with B being further from Earth than A. The orbit is divided here into 80 points: each step refers to a timestep of approx. 0.99888 years or 364.84 days.|alt=Graphic image of a near-circle and a narrow ellipse labelled respectively as "B's real trajectory" and "B's apparent trajectory", with years marked along portions of the ellipses.]] [[File:Orbital plot of Proxima Centauri.jpg|thumb|upright=1.4|Orbital plot of Proxima Centauri around the bright apparent star Alpha Centauri AB, with position change marked (in thousands of years).]] The A and B components of Alpha Centauri have an orbital period of 79.762 years. Their orbit is moderately [[orbital eccentricity|eccentric]], as it has an eccentricity of almost 0.52;<ref name=Akeson2021/> their closest approach or [[apsis|periastron]] is {{cvt|11.2|AU|e9km}}, or about the distance between the Sun and Saturn; and their furthest separation or [[apsis|apastron]] is {{cvt|35.6|AU|e9km}}, about the distance between the Sun and Pluto.<ref name=SixthCatOrbVisBin/> The most recent [[apsis|periastron]] was in August 1955 and the next will occur in May 2035; the most recent [[apsis|apastron]] was in May 1995 and will next occur in 2075. Viewed from Earth, the apparent orbit of A and B means that their separation and [[position angle]] (PA) are in continuous change throughout their projected orbit. Observed stellar positions in 2019 are separated by 4.92 [[Minute and second of arc|arcsec]] through the PA of 337.1°, increasing to 5.49 arcsec through 345.3° in 2020.<ref name="SixthCatOrbVisBin"/> The closest recent approach was in February 2016, at 4.0 arcsec through the PA of 300°.<ref name="SixthCatOrbVisBin">{{citation-attribution|1={{cite news |last1=Hartkopf|first1=W. |last2=Mason |first2= D. M.|year=2008 |url=http://ad.usno.navy.mil/wds/orb6.html |title=Sixth Catalog of Orbits of Visual Binaries |publisher=U.S. Naval Observatory |access-date=26 May 2008|archive-url=https://web.archive.org/web/20090412084731/http://ad.usno.navy.mil/wds/orb6.html|archive-date=12 April 2009|url-status=dead}} }}</ref><ref>{{cite web |first = Andrew |last = James |url=http://www.southastrodel.com/PageAlphaCen006.htm |title=ALPHA CENTAURI: 6 |website=southastrodel.com |date=11 March 2008 |access-date=12 August 2010}}</ref> The observed maximum separation of these stars is about 22 arcsec, while the minimum distance is 1.7 arcsec.<ref name=Aitken>{{cite book |title=The Binary Stars |publisher=Dover |author-link=Robert Grant Aitken |first=R.G. |last=Aitken |pages=235–237 |year=1961}}</ref> The widest separation occurred during February 1976, and the next will be in January 2056.<ref name=SixthCatOrbVisBin/> Alpha Centauri C is about {{cvt|13000|AU|ly e12km}} from Alpha Centauri AB, equivalent to about 5% of the distance between Alpha Centauri AB and the Sun.<ref name=Kervella2017/><ref name=Matt93/><ref name="adsabs.harvard.edu"/> Until 2017, measurements of its small speed and its trajectory were of too little accuracy and duration in years to determine whether it is bound to Alpha Centauri AB or unrelated. Radial velocity measurements made in 2017 were precise enough to show that Proxima Centauri and Alpha Centauri AB are gravitationally bound.<ref name=Kervella2017/> The orbital period of Proxima Centauri is approximately {{val|511000|41000|30000}} years, with an eccentricity of 0.5, much more eccentric than [[Mercury (planet)|Mercury]]'s. Proxima Centauri comes within {{val|4100|700|600|ul=AU}} of AB at periastron, and its apastron occurs at {{val|12300|200|100|ul=AU}}.<ref name="Akeson2021"/> === Physical properties === [[File:ESO - Alpha Centauri in the HR-System (by).jpg|thumb|ESO - Alpha Centauri in the HR-System (by)]] [[File:Relative sizes of the Alpha Centauri components and other objects (artist’s impression).tif|thumb|Relative sizes and colour of the Alpha Centauri A, B and C (Proxima) and other [[List of nearest stars and brown dwarfs|local stars]], incl. the Sun and Jupiter (artist’s impression)]] [[Asteroseismology|Asteroseismic]] studies, [[chromospheric activity]], and stellar rotation ([[gyrochronology]]) are all consistent with the Alpha Centauri system being similar in age to, or slightly older than, the Sun.<ref name="Mam08">{{cite journal |first1=E.E. |last1=Mamajek |first2=L.A. |last2=Hillenbrand |author2-link= Lynne Hillenbrand |year=2008 |title=Improved age estimation for Solar-type dwarfs using activity-rotation diagnostics |journal=Astrophysical Journal |volume=687 |issue=2 |pages=1264–1293|arxiv=0807.1686|bibcode=2008ApJ...687.1264M |doi=10.1086/591785 |s2cid=27151456 }}</ref> Asteroseismic analyses that incorporate tight observational constraints on the stellar parameters for the Alpha Centauri stars have yielded age estimates of {{val|4.85|0.5}} Gyr,<ref name=Thevenin02>{{cite journal|last1=Thévenin |first1= F.|last2=Provost |first2= J. |last3=Morel |first3= P. |last4=Berthomieu |first4= G.|last5=Bouchy |first5= F. |last6=Carrier |first6= F. |year=2002 |title=Asteroseismology and calibration of alpha Cen binary system |journal=Astronomy & Astrophysics |volume=392 |page=L9 |arxiv=astro-ph/0206283 |bibcode=2002A&A...392L...9T |doi=10.1051/0004-6361:20021074 |s2cid=17293259}}</ref> {{val|5.0|0.5}} Gyr,<ref name="Bazot12">{{cite journal |last1=Bazot |first1= M. |last2=Bourguignon |first2= S. |last3=Christensen-Dalsgaard |first3= J. |year=2012 |title=A Bayesian approach to the modelling of {{nobr|alpha Cen A}} |journal=[[Monthly Notices of the Royal Astronomical Society]] |volume=427 |issue=3 |pages=1847–1866 |arxiv=1209.0222 |bibcode=2012MNRAS.427.1847B |doi=10.1111/j.1365-2966.2012.21818.x |doi-access= free |s2cid=118414505}}</ref> {{nobr|5.2 ± 1.9 Gyr,}}<ref name=Miglio05>{{cite journal |last1=Miglio |first1= A.|last2=Montalbán |first2= J.|year=2005|title=Constraining fundamental stellar parameters using seismology. Application to α Centauri AB |journal=Astronomy & Astrophysics |volume=441|issue=2|pages=615–629|arxiv=astro-ph/0505537 |bibcode=2005A&A...441..615M|doi=10.1051/0004-6361:20052988 |s2cid=119078808}}</ref> 6.4 Gyr,<ref name=Thoul03>{{cite journal |last1=Thoul |first1= A. |last2=Scuflaire |first2= R. |last3=Noels |first3= A. |last4=Vatovez |first4= B. |last5=Briquet |first5= M.|last6=Dupret |first6= M.-A. |last7=Montalban |first7= J. |year=2003 |title=A new seismic analysis of alpha Centauri |journal=Astronomy & Astrophysics |volume=402 |pages=293–297 |arxiv=astro-ph/0303467 |bibcode=2003A&A...402..293T |doi=10.1051/0004-6361:20030244 |s2cid=15886763}}</ref> and {{val|6.52|0.3}} Gyr.<ref name=Eggenberger04>{{cite journal |last1=Eggenberger |first1= P. |last2=Charbonnel |first2= C. |last3=Talon |first3= S. |last4=Meynet |first4= G. |last5=Maeder |first5= A. |last6=Carrier |first6= F. |last7=Bourban |first7= G. |year=2004 |title=Analysis of {{nobr|α Centauri AB}} including seismic constraints |journal=Astronomy & Astrophysics |volume=417 |pages=235–246|arxiv=astro-ph/0401606|bibcode=2004A&A...417..235E |doi=10.1051/0004-6361:20034203|s2cid=119487043}}</ref> Age estimates for the stars based on chromospheric activity (Calcium H & K emission) yield {{nobr|4.4 ± 2.1 Gyr,}} whereas gyrochronology yields {{val|5.0|0.3}} Gyr.<ref name=Mam08/> [[Stellar evolution]] theory implies both stars are slightly older than the Sun at 5 to 6 billion years, as derived by their mass and spectral characteristics.<ref name=Matt93/><ref name=stellar-model-kim>{{cite journal|last=Kim |first= Y-C. |year=1999 |title=Standard stellar models; {{nobr|alpha Cen A and B}} |journal=Journal of the Korean Astronomical Society |volume=32 |issue=2 |page=119 |bibcode=1999JKAS...32..119K}}</ref> From the [[orbital elements]], the total mass of Alpha Centauri AB is about {{Solar mass|2.0|link=y}}{{efn| <math display="block">\begin{smallmatrix} \left( \frac{\ 11.2 + 35.6\ }{ 2 }\right)^3 \frac{ 1 }{~ 79.91^2\ } \approx 2.0 \end{smallmatrix} \qquad </math> – see formula in [[Standard gravitational parameter#Two bodies orbiting each other|standard gravitational parameter]] article. }} – or twice that of the Sun.<ref name=Aitken/> The average individual stellar masses are about {{Solar mass|1.08}} and {{Solar mass|0.91}}, respectively,<ref name=Akeson2021/> though slightly different masses have also been quoted in recent years, such as {{Solar mass|1.14}} and {{Solar mass|0.92}},<ref name=RECONS/> totaling {{Solar mass|2.06}}. Alpha Centauri A and B have [[absolute magnitude]]s of +4.38 and +5.71, respectively. ==== Alpha Centauri AB System ==== [[File:Best image of Alpha Centauri A and B.jpg|thumb| {{nobr|α Centauri A}} (left) is of the same [[stellar classification|stellar type]] G2 as the Sun, while {{nobr|α Centauri B}} (right) is a K1-type star.<ref>{{cite web|title=Best image of Alpha Centauri A and B |url=http://www.spacetelescope.org/images/potw1635a/|website=spacetelescope.org|access-date=29 August 2016}}</ref>|alt=Two white disks side by side, each with coloured fringes and prominent diffraction spikes]] ===== Alpha Centauri A ===== '''Alpha Centauri A''', also known as '''Rigil Kentaurus''', is the principal member, or primary, of the binary system. It is a solar-like [[main sequence|main-sequence]] star with a similar yellowish colour,<ref name="csiro">{{cite web |title=The colour of stars |date=21 December 2004 |website=Australia Telescope, Outreach and Education |publisher=Commonwealth Scientific and Industrial Research Organisation |url=http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html|access-date=16 January 2012|url-status=dead|archive-url=https://web.archive.org/web/20120222183238/http://outreach.atnf.csiro.au/education/senior/astrophysics/photometry_colour.html |archive-date=22 February 2012}}</ref> whose [[stellar classification]] is [[spectral type]] G2-V;<ref name=torres2006/> it is about 10% more massive than the Sun,<ref name="Thevenin02"/> with a radius about 22% larger.<ref name=kervella2017>{{cite journal |title=The radii and limb darkenings of α Centauri A and B. Interferometric measurements with VLTI/PIONIER |journal=Astronomy & Astrophysics |first1=P. |last1=Kervella |first2=L. |last2=Bigot |first3=A. |last3=Gallenne |first4=F. |last4=Thévenin |volume=597 |page=A137 |date=January 2017 |doi=10.1051/0004-6361/201629505 |bibcode=2017A&A...597A.137K |arxiv=1610.06185 |s2cid=55597767}}</ref> When considered among the individual [[List of brightest stars|brightest stars]] in the night sky, it is the fourth-brightest at an apparent magnitude of +0.01,<ref name="ducati"/> being slightly fainter than [[Arcturus]] at an [[apparent magnitude]] of −0.05. The type of [[magnetic activity]] on Alpha Centauri A is comparable to that of the Sun, showing [[stellar corona|coronal]] variability due to [[star spot]]s, as modulated by the rotation of the star. However, since 2005 the activity level has fallen into a deep minimum that might be similar to the Sun's historical [[Maunder Minimum]]. Alternatively, it may have a very long stellar activity cycle and is slowly recovering from a minimum phase.<ref name="Ayres2014">{{cite journal|title=The Ups and Downs of α Centauri|last1=Ayres|first1=Thomas R.|journal=The Astronomical Journal|arxiv=1401.0847|volume=147|issue=3|id=59 |page=12|date=March 2014|doi=10.1088/0004-6256/147/3/59|bibcode=2014AJ....147...59A|s2cid=117715969}}</ref> ===== Alpha Centauri B ===== {{hatnote group| {{about-distinguish|α Centauri B, also known as Toliman|Beta Centauri{{!}}β Centauri|HD 102964{{!}}B Centauri|HD 129116{{!}}b Centauri|section=yes}}{{other uses|Toliman (disambiguation)}} }} '''Alpha Centauri B''', also known as '''Toliman''', is the secondary star of the binary system. It is a main-sequence star of spectral type K1-V, making it more an orange colour than Alpha Centauri A;<ref name="csiro"/> it has around 90% of the mass of the Sun and a 14% smaller diameter. Although it has a lower luminosity than A, Alpha Centauri B emits more energy in the [[X-ray]] band.<ref name="Xrays"/> Its [[light curve]] varies on a short time scale, and there has been at least one observed [[Flare star|flare]].<ref name="Xrays">{{cite journal|last1=Robrade|first1=J.|last2=Schmitt|first2=J. H. M. M.|last3=Favata|first3=F. |year=2005|title=X-rays from α Centauri – The darkening of the solar twin|journal=Astronomy and Astrophysics|volume=442|issue=1|pages=315–321|bibcode=2005A&A...442..315R|doi=10.1051/0004-6361:20053314 |arxiv=astro-ph/0508260|s2cid=119120}}</ref> It is more magnetically active than Alpha Centauri A, showing a cycle of {{Val|8.2|0.2|u=yr}} compared to 11 years for the Sun, and has about half the minimum-to-peak variation in coronal luminosity of the Sun.<ref name="Ayres2014"/> This cycle was recently re-estimated based on more than 20 years of high-resolution spectroscopic observations of the CaIIH&K lines showing a cycle of {{Val|7.8|0.2|u=yr}}.<ref name="Cretignier2024">{{cite journal|last1=Cretignier|first1=M.|last2=Hara|first2=N.|last3=Pietrow|first3=A.G.M.|year=2024|title=Stellar surface information from the Ca II H&K lines - II. Defining better activity proxies|journal=Monthly Notices of the Royal Astronomical Society|volume=535|issue=1|pages=2562–2584|bibcode=2024MNRAS.535.2562C|doi= 10.1093/mnras/stae2508 |doi-access=free |arxiv=astro-ph/0508260|s2cid=119120}}</ref> Alpha Centauri B has an apparent magnitude of +1.35, slightly dimmer than [[Mimosa (star)|Mimosa]].<ref name="IAU-LSN"/> ==== Alpha Centauri C ==== {{Main|Proxima Centauri}} Alpha Centauri C, better known as Proxima Centauri, is a small main-sequence [[red dwarf]] of spectral class M6-Ve. It has an [[absolute magnitude]] of +15.60, over 20,000 times fainter than the Sun. Its mass is calculated to be {{Solar mass|{{val|0.1221}}}}.<ref name="KervellaThévenin2017">{{cite journal|last1=Kervella|first1=P.|last2=Thévenin|first2=F.|last3=Lovis|first3=C.|title=Proxima's orbit around α Centauri |journal=Astronomy & Astrophysics|volume=598|year=2017|pages=L7|issn=0004-6361|doi=10.1051/0004-6361/201629930|arxiv=1611.03495|bibcode=2017A&A...598L...7K|s2cid=50867264}}</ref> It is the closest star to the Sun but is too faint to be visible to the naked eye.<ref name=ESA>{{cite web |title=Proxima Centauri UV flux distribution |url=http://sdc.cab.inta-csic.es/ines/Ines_PCentre/Demos/Fluxdist/pcentauri.html |access-date=July 11, 2007 |publisher=[[ESA]]|work=The Astronomical Data Centre}}</ref> <div style="overflow:auto;">[[File:Relative positions of Sun, Alpha Centauri AB and Proxima Centauri.png|thumb|upright=5|center|Relative positions of Sun, Alpha Centauri AB and Proxima Centauri. Grey dot is projection of Proxima Centauri, located at the same distance as Alpha Centauri AB.|alt=Very wide rectangle with a dot labelled "Sun" on the left and two dots respectively labelled "Alpha Centauri AB" and "Proxima Centauri" on the right side, joined by lines labelled with distances and angles]]</div> == Planetary system == The Alpha Centauri system as a whole has two confirmed planets, both of them around Proxima Centauri. While other planets have been claimed to exist around all of the stars, none of the discoveries have been confirmed. === Planets of Proxima Centauri === {{Main|Proxima Centauri b|Proxima Centauri c|l2=c|Proxima Centauri d|l3=d}} {{See also|Proxima Centauri#Planetary system}} Proxima Centauri b is a terrestrial planet discovered in 2016 by astronomers at the [[European Southern Observatory]] (ESO). It has an estimated [[minimum mass]] of 1.17 {{Earth mass|link=y}} ([[Earth mass]]es) and orbits approximately 0.049 [[Astronomical unit|AU]] from Proxima Centauri, placing it in the star's [[Circumstellar habitable zone|habitable zone]].<ref name="proxima b discovery paper">{{cite journal|bibcode=2016Natur.536..437A|title=A terrestrial planet candidate in a temperate orbit around Proxima Centauri|journal=Nature|volume=536|issue=7617|pages=437–440|last1=Anglada-Escudé |first1=Guillem|last2=Amado|first2=Pedro J.|last3=Barnes|first3=John|last4=Berdiñas|first4=Zaira M.|last5=Butler|first5=R. Paul|last6=Coleman|first6=Gavin A. L.|last7=de la Cueva|first7=Ignacio|last8=Dreizler |first8=Stefan|last9=Endl|first9=Michael|last10=Giesers|first10=Benjamin|last11=Jeffers|first11=Sandra V.|last12=Jenkins|first12=James S.|last13=Jones|first13=Hugh R. A.|last14=Kiraga|first14=Marcin |last15=Kürster|first15=Martin|last16=López-González|first16=María J.|last17=Marvin|first17=Christopher J.|last18=Morales|first18=Nicolás|last19=Morin|first19=Julien|last20=Nelson|first20=Richard P. |last21=Ortiz|first21=José L.|last22=Ofir|first22=Aviv|last23=Paardekooper|first23=Sijme-Jan|last24=Reiners|first24=Ansgar|last25=Rodríguez|first25=Eloy|last26=Rodríguez-López|first26=Cristina|last27=Sarmiento |first27=Luis F.|last28=Strachan|first28=John P.|last29=Tsapras|first29=Yiannis|last30=Tuomi|first30=Mikko|first31=Mathias|last31=Zechmeister|display-authors=3|year=2016|arxiv=1609.03449|doi=10.1038/nature19106 |pmid=27558064|s2cid=4451513|url=https://www.nature.com/articles/nature19106}}</ref><ref name=Mascareno2020>{{cite journal|arxiv=2005.12114|last1=Suárez Mascareño|first1=A.|last2=Faria|first2=J. P. |last3=Figueira|first3=P.|title=Revisiting Proxima with ESPRESSO|journal=Astronomy & Astrophysics|year=2020|volume=639|page=A77|doi=10.1051/0004-6361/202037745|bibcode=2020A&A...639A..77S|s2cid=218869742 |display-authors=et al.}}</ref> The discovery of Proxima Centauri c was formally published in 2020 and could be a [[super-Earth]] or [[mini-Neptune]].<ref name="proxima c scientific american">{{cite magazine|title=A Second Planet May Orbit Earth's Nearest Neighboring Star|url=https://www.scientificamerican.com/article/a-second-planet-may-orbit-earths-nearest-neighboring-star/|magazine=Scientific American|first=Lee|last=Billings|date=12 April 2019|access-date=2 August 2020}}</ref><ref name="proxima c discovery paper">{{cite journal|last1=Damasso|first1=Mario|last2=Del Sordo|first2=Fabio |display-authors=et al. |title=A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU |journal=Science Advances |date=January 2020 |volume=6 |issue=3 |page=eaax7467|doi=10.1126/sciadv.aax7467|pmid=31998838|pmc=6962037 |bibcode=2020SciA....6.7467D|doi-access=free}}</ref> It has a mass of roughly 7 {{Earth mass}} and orbits about {{nobr|1.49 AU}} from Proxima Centauri with a period of {{convert|1928|days|years}}.<ref name="proxima c mass">{{cite journal|last1=Benedict|first1=G. Fritz|last2=McArthur|first2=Barbara E.|title=A Moving Target — Revising the Mass of Proxima Centauri c|journal=Research Notes of the AAS|date=June 2020|volume=4|issue=6|page=86|doi=10.3847/2515-5172/ab9ca9|bibcode=2020RNAAS...4...86B|s2cid=225798015 |doi-access=free }}</ref> In June 2020, a possible direct imaging detection of the planet hinted at the presence of a large ring system.<ref name="proxima c imaging">{{cite journal|last1=Gratton |first1=Raffaele|last2=Zurlo|first2=Alice|last3=Le Coroller|first3=Hervé|display-authors=et al.|title=Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT |journal=Astronomy & Astrophysics|date=June 2020|volume=638|page=A120|doi=10.1051/0004-6361/202037594 |bibcode=2020A&A...638A.120G |arxiv=2004.06685|s2cid=215754278}}</ref> However, a 2022 study disputed the existence of this planet.<ref name="Artigau2022">{{cite journal |bibcode=2022AJ....164...84A |title=Line-by-line Velocity Measurements: An Outlier-resistant Method for Precision Velocimetry |last1=Artigau |first1=Étienne |last2=Cadieux |first2=Charles |last3=Cook |first3=Neil J. |last4=Doyon |first4=René |last5=Vandal |first5=Thomas |last6=Donati |first6=Jean-François |last7=Moutou |first7=Claire |last8=Delfosse |first8=Xavier |last9=Fouqué |first9=Pascal |last10=Martioli |first10=Eder |last11=Bouchy |first11=François |last12=Parsons |first12=Jasmine |last13=Carmona |first13=Andres |last14=Dumusque |first14=Xavier |last15=Astudillo-Defru |first15=Nicola |last16=Bonfils |first16=Xavier |last17=Mignon |first17=Lucille |journal=The Astronomical Journal |date=2022 |volume=164 |issue=3 |page=84 |doi=10.3847/1538-3881/ac7ce6 |doi-access=free |arxiv=2207.13524 }}</ref> A 2020 paper refining Proxima b's mass excludes the presence of extra companions with masses above {{Earth mass|0.6}} at periods shorter than 50 days, but the authors detected a radial-velocity curve with a periodicity of 5.15 days, suggesting the presence of a planet with a mass of about {{Earth mass|0.29}}.<ref name=Mascareno2020/> This planet, Proxima Centauri d, was detected in 2022.<ref name="Faria2022">{{cite journal |last1=Faria |first1=J. P. |last2=Suárez Mascareño |first2=A. |last3=Figueira |first3=P. |last4=Silva |first4=A. M. |last5=Damasso |first5=M. |last6=Demangeon |first6=O. |last7=Pepe |first7=F. |last8=Santos |first8=N. C. |last9=Rebolo |first9=R. |last10=Cristiani |first10=S. |last11=Adibekyan |first11=V. |display-authors=2 |date=January 4, 2022 |title=A candidate short-period sub-Earth orbiting Proxima Centauri |url=https://www.eso.org/public/archives/releases/sciencepapers/eso2202/eso2202a.pdf |journal=Astronomy & Astrophysics |publisher=European Southern Observatory |volume=658 |pages=17 |arxiv=2202.05188 |bibcode=2022A&A...658A.115F |doi=10.1051/0004-6361/202142337 |doi-access=free |last35=Tabernero |last23=Lo Curto |first18=X. |last19=Ehrenreich |first19=D. |last20=González Hernández |first20=J. I. |last21=Hara |last15=Cabral |first22=J. |first28=G. |last24=Lovis |first23=G. |first17=P. |first24=C. |last25=Martins |first25=C. J. A. P. |last26=Mégevand |first26=D. |last27=Mehner |first27=A. |last28=Micela |first21=N. |last18=Dumusque |last17=Di Marcantonio |first30=N. J. |first36=S. |last31=Pallé |first31=E. |last32=Poretti |first32=E. |last33=Sousa |first33=S. G. |last34=Sozzetti |first34=A. |last36=Udry |first15=A. |first29=P. |last37=Zapatero Osorio |first16=V. |first37=M. R. |first14=S. C. C. |last14=Barros |first13=R. |last13=Allart |first12=Y. |last12=Alibert |last30=Nunes |last29=Molaro |last16=D'Odorico |last22=Lillo-Box |first35=H.}}</ref><ref name="Artigau2022"/> === Planets of Alpha Centauri A === {{Main|2 = Alpha Centauri Ab}} [[File:Candidate1 Discovery.png|thumb|upright=1.6|The discovery image of Alpha Centauri's candidate Neptunian planet, marked here as "C1"]] {{Orbitbox planet begin |name=Alpha Centauri A |period_unit=day }} {{OrbitboxPlanet hypothetical |exoplanet=[[Alpha Centauri Ab|b]] |semimajor= 1.1 |period= ~360 |mass_earth= 9~35{{efn| These mass limits are calculated from the observed radius of {{nobr|{{math| 3.3~7}} {{Earth radius|link=n}}}} applied to the equation quoted, and presumably used, to calculate the planet mass from the planet radius in the Wagner ''et al'' 2021 paper:<ref name="WagnerBoehle2021"/> {{nobr|{{math| ''R'' ∝ ''M''{{sup| 0.55}} }} }} (although this radius-mass relationship is for low-mass planets and not for larger gas giants). Therefore {{nobr| {{math| 3.3{{sup|1.82}} {{=}} 8.77 }} {{Earth mass|link=n}} }} and {{nobr|{{math| 7{{sup|1.82}} {{=}} 34.52}} {{Earth mass|link=n}}.}} The {{nobr| {{mvar|M}}{{sub|{{math|sin ''i''}}}} ≥ 53 {{Earth mass|link=n}} }} is for a planet at the outer edge of the conservative habitable zone, {{nobr|2.1 AU}}, and so the upper mass limit is lower than that for the C{{sub|1}} planet at just {{nobr|1.1 AU}}. }} |radius_earth= 3.3~7 |inclination= ~65 ± 25 }} {{Orbitbox end}} In 2021, a candidate planet named Candidate 1 (or C1) was detected around Alpha Centauri A, thought to orbit at approximately {{nobr|1.1 AU}} with a period of about one year, and to have a mass between that of Neptune and one-half that of Saturn, though it may be a dust disk or an artifact. The possibility of C1 being a background star has been ruled out.<ref>{{cite web | url = https://www.theguardian.com/science/2021/feb/10/astronomers-hopes-raised-by-glimpse-of-possible-new-planet-alpha-centauri| title = Astronomers' hopes raised by glimpse of possible new planet? |access-date=2022-01-16| work=[[The Guardian]] | date=10 February 2021 |first=Ian |last=Sample}}</ref><ref name="WagnerBoehle2021">{{cite journal |last1=Wagner |first1=K. |last2=Boehle |first2=A. |last3=Pathak |first3=P.|last4=Kasper |first4=M.|last5=Arsenault|first5=R. |last6=Jakob|first6=G.|last7=Käufl|first7=U. |last8=Leveratto|first8=S.|last9=Maire|first9=A.-L.|last10=Pantin |first10=E.|last11=Siebenmorgen |first11=R.|last12=Zins|first12=G. |last13=Absil|first13=O. |last14=Ageorges |first14=N. |last15=Apai |first15=D. |last16=Carlotti|first16=A. |last17=Choquet|first17=É.|last18=Delacroix|first18=C.|last19=Dohlen|first19=K.|last20=Duhoux|first20=P.|last21=Forsberg|first21=P.|last22=Fuenteseca|first22=E.|last23=Gutruf|first23=S.|last24=Guyon|first24=O.|last25=Huby|first25=E.|last26=Kampf|first26=D.|last27=Karlsson|first27=M.|last28=Kervella|first28=P.|last29=Kirchbauer|first29=J.-P.|last30=Klupar|first30=P. |last31=Kolb|first31=J.|last32=Mawet|first32=D.|last33=N'Diaye|first33=M.|last34=Orban de Xivry|first34=G.|last35=Quanz|first35=S. P.|last36=Reutlinger|first36=A.|last37=Ruane|first37=G.|last38=Riquelme |first38=M. |last39=Soenke|first39=C.|last40=Sterzik|first40=M.|last41=Vigan|first41=A.|last42=de Zeeuw|first42=T. |display-authors=6 |title=Imaging low-mass planets within the habitable zone of α Centauri |journal=Nature Communications|date=10 February 2021|volume=12|issue=1|page=922|doi=10.1038/s41467-021-21176-6|pmid=33568657|pmc=7876126|doi-access=free|arxiv=2102.05159|bibcode=2021NatCo..12..922W}} [https://www.youtube.com/watch?v=Da2EMPuGu00&feature=youtu.be Kevin Wagner's (lead author of paper?) video of discovery]</ref> If this candidate is confirmed, the temporary name C1 will most likely be replaced with the scientific designation Alpha Centauri Ab in accordance with current naming conventions.<ref name="IAUNamingRules">{{cite web|url=https://www.iau.org/public/themes/naming_exoplanets/|title=Naming of Exoplanets|publisher=International Astronomical Union|access-date=24 July 2021|archive-date=10 January 2020|archive-url=https://web.archive.org/web/20200110031335/https://www.iau.org/public/themes/naming_exoplanets/|url-status=dead}}</ref> GO Cycle 1 observations are planned for the [[James Webb Space Telescope]] (JWST) to search for planets around Alpha Centauri A, as well as observations of [[Epsilon Muscae]].<ref name=":0">{{Cite web |title=1618 Program Information |url=https://www.stsci.edu/cgi-bin/get-proposal-info?observatory=JWST&id=1618 |access-date=2022-09-01 |website=www.stsci.edu |archive-date=1 September 2022 |archive-url=https://web.archive.org/web/20220901094214/https://www.stsci.edu/cgi-bin/get-proposal-info?observatory=JWST&id=1618 |url-status=dead }}</ref> The coronographic observations, which occurred on July 26 and 27, 2023, were failures, though there are follow-up observations in March 2024.<ref>{{Cite web |title=Visit Information |url=https://www.stsci.edu/cgi-bin/get-visit-status?id=1618&markupFormat=html&observatory=JWST |access-date=2022-09-01 |website=www.stsci.edu |archive-date=1 September 2022 |archive-url=https://web.archive.org/web/20220901094234/https://www.stsci.edu/cgi-bin/get-visit-status?id=1618&markupFormat=html&observatory=JWST |url-status=dead }}</ref> Pre-launch estimates predicted that JWST will be able to find planets with a radius of 5 {{Earth radius|link=true}} at {{nobr|1–3 AU}}. Multiple observations every 3–6 months could push the limit down to 3 {{Earth radius}}.<ref>{{Cite journal |last1=Beichman |first1=Charles |last2=Ygouf |first2=Marie |last3=Llop Sayson |first3=Jorge |last4=Mawet |first4=Dimitri |last5=Yung |first5=Yuk |last6=Choquet |first6=Elodie |last7=Kervella |first7=Pierre |last8=Boccaletti |first8=Anthony |last9=Belikov |first9=Ruslan |last10=Lissauer |first10=Jack J. |last11=Quarles |first11=Billy |last12=Lagage |first12=Pierre-Olivier |last13=Dicken |first13=Daniel |last14=Hu |first14=Renyu |last15=Mennesson |first15=Bertrand |date=2020-01-01 |title=Searching for Planets Orbiting α Cen A with the James Webb Space Telescope |url=https://ui.adsabs.harvard.edu/abs/2020PASP..132a5002B |journal=Publications of the Astronomical Society of the Pacific |volume=132 |issue=1007 |pages=015002 |doi=10.1088/1538-3873/ab5066 |arxiv=1910.09709 |bibcode=2020PASP..132a5002B |s2cid=204823856 |issn=0004-6280}}</ref> Post-launch estimates based on observations of [[HIP 65426 b]] find that JWST will be able to find planets even closer to Alpha Centauri A and could find a 5 {{Earth radius}} planet at {{nobr|0.5–2.5 AU}}.<ref>{{Cite journal |last1=Carter |first1=Aarynn L. |last2=Hinkley |first2=Sasha |last3=Kammerer |first3=Jens |last4=Skemer |first4=Andrew |last5=Biller |first5=Beth A. |last6=Leisenring |first6=Jarron M. |last7=Millar-Blanchaer |first7=Maxwell A. |last8=Petrus |first8=Simon |last9=Stone |first9=Jordan M. |last10=Ward-Duong |first10=Kimberly |last11=Wang |first11=Jason J. |last12=Girard |first12=Julien H. |last13=Hines |first13=Dean C. |last14=Perrin |first14=Marshall D. |last15=Pueyo |first15=Laurent |date=2023 |title=The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High-contrast Imaging of the Exoplanet HIP 65426 b from 2 to 16 μm |journal=The Astrophysical Journal Letters |volume=951 |issue=1 |pages=L20 |doi=10.3847/2041-8213/acd93e |arxiv=2208.14990 |bibcode=2023ApJ...951L..20C |doi-access=free }}</ref> Candidate 1 has an estimated radius between {{nobr|3.3–11 {{Earth radius}}}}<ref name=WagnerBoehle2021/> and orbits at {{nobr|1.1 AU}}. It is therefore likely within the reach of JWST observations. === {{anchor|Unconfirmed planets}}Planets of Alpha Centauri B === {{Main|Alpha Centauri Bb}} The first claim of a planet around Alpha Centauri B was that of [[Alpha Centauri Bb]] in 2012, which was proposed to be an Earth-mass planet in a 3.2-day orbit.<ref name="Dumusque"/> This was refuted in 2015 when the apparent planet was shown to be an artifact of the way the [[Doppler spectroscopy|radial velocity]] data was processed.<ref>{{cite news |last=Wenz |first=John |date=2015-10-29 |title=It turns out the closest exoplanet to us doesn't actually exist |magazine=Popular Mechanics |url=https://www.popularmechanics.com/space/a18003/no-alpha-centauri-b-planet/ |access-date=2018-12-08}}</ref><ref>{{cite news |title=Poof! The planet closest to our Solar system just vanished |date=2015-10-29 |website = National Geographic News |url=https://news.nationalgeographic.com/2015/10/151028-planet-disappears-alpha-centauri-astronomy-science/ |url-status=dead |access-date=2018-12-08 |archive-url=https://web.archive.org/web/20151030010115/http://news.nationalgeographic.com/2015/10/151028-planet-disappears-alpha-centauri-astronomy-science/ |archive-date=30 October 2015 }}</ref><ref name=Rajpaul2016>{{cite journal |first1=Vinesh |last1=Rajpaul |first2=Suzanne |last2=Aigrain |first3=Stephen J. |last3=Roberts |date=19 October 2015 |title=Ghost in the time series: No planet for {{nobr|alpha Cen B}} |journal=Monthly Notices of the Royal Astronomical Society |volume=456 |issue=1 |pages=L6–L10 |arxiv=1510.05598 |bibcode=2016MNRAS.456L...6R |doi=10.1093/mnrasl/slv164 |doi-access=free |s2cid=119294717}}</ref> A search for [[astronomical transit|transits]] of planet Bb was conducted with the [[Hubble Space Telescope]] from 2013 to 2014. This search detected one potential transit-like event, which could be associated with a different planet with a radius around {{Earth radius|0.92|link=y}}. This planet would most likely orbit Alpha Centauri B with an orbital period of 20.4 days or less, with only a 5% chance of it having a longer orbit. The median of the likely orbits is 12.4 days. Its orbit would likely have an eccentricity of 0.24 or less.<ref name=Demory2015>{{cite journal |last1=Demory |first1=Brice-Olivier |last2=Ehrenreich |first2=David |last3=Queloz |first3=Didier |last4=Seager |first4=Sara |last5=Gilliland |first5=Ronald |last6=Chaplin |first6=William J. |last7=Proffitt |first7=Charles |last8=Gillon |first8=Michael |last9=Guenther |first9=Maximilian N. |last10=Benneke |first10=Bjoern |last11=Dumusque |first11=Xavier |last12=Lovis |first12=Christophe |last13=Pepe|first13=Francesco |last14=Segransan |first14=Damien |last15=Triaud |first15=Amaury |last16=Udry |first16=Stephane |display-authors=6 |date=June 2015 |title=Hubble Space Telescope search for the transit of the Earth-mass exoplanet Alpha Centauri Bb |journal=Monthly Notices of the Royal Astronomical Society |volume=450 |issue=2 |pages=2043–2051 |arxiv=1503.07528 |bibcode=2015MNRAS.450.2043D |doi=10.1093/mnras/stv673 |doi-access=free |s2cid=119162954}}</ref> It could have lakes of molten lava and would be far too close to Alpha Centauri B to harbour [[extraterrestrial life|life]].<ref>{{cite news |last=Aron |first=Jacob |title=Twin Earths may lurk in our nearest star system |magazine=[[New Scientist]] |url=https://www.newscientist.com/article/dn27259-twin-earths-may-lurk-in-our-nearest-star-system/ |access-date=2018-12-08}}</ref> If confirmed, this planet might be called {{nobr|Alpha Centauri Bc}}. However, the name has not been used in the literature, as it is not a claimed discovery. === Hypothetical planets === Additional planets may exist in the Alpha Centauri system, either orbiting Alpha Centauri A or Alpha Centauri B individually, or in large orbits around Alpha Centauri AB. Because both stars are fairly similar to the Sun (for example, in age and [[metallicity]]), astronomers have been especially interested in making detailed searches for planets in the Alpha Centauri system. Several established planet-hunting teams have used various [[radial velocity]] or star [[Astronomical transit|transit]] methods in their searches around these two bright stars.<ref name="universetoday.com">{{cite news |title=Why haven't planets been detected around Alpha Centauri? |date=2008-04-19 |website=[[Universe Today]] |url=http://www.universetoday.com/2008/04/19/why-havent-planets-been-detected-around-alpha-centauri/ |access-date=19 April 2008 |url-status=live |archive-url=https://web.archive.org/web/20080421040845/http://www.universetoday.com/2008/04/19/why-havent-planets-been-detected-around-alpha-centauri/ |archive-date=21 April 2008 }}</ref> All the observational studies have so far failed to find evidence for [[brown dwarf]]s or [[gas giant]]s.<ref name="universetoday.com"/><ref>{{cite web |url=http://www.ucsc.edu/news_events/text.asp?pid=2012|title=Nearby star should harbor detectable, Earth-like planets |date=7 March 2008 |first=Tim |last=Stephens |work=News & Events |publisher=UC Santa Cruz |access-date=19 April 2008|archive-url=https://web.archive.org/web/20080417004113/http://www.ucsc.edu/news_events/text.asp?pid=2012| archive-date=17 April 2008|url-status=dead}}</ref> In 2009, computer simulations showed that a planet might have been able to form near the inner edge of Alpha Centauri B's habitable zone, which extends from {{nobr|0.5–0.9 AU}} from the star. Certain special assumptions, such as considering that the Alpha Centauri pair may have initially formed with a wider separation and later moved closer to each other (as might be possible if they formed in a dense [[Open cluster|star cluster]]), would permit an accretion-friendly environment farther from the star.<ref name=Thebault-2009>{{cite journal|last1=Thebault |first1= P.|last2=Marzazi |first2= F.|last3=Scholl |first3= H.|year=2009 |title=Planet formation in the habitable zone of alpha centauri B|journal=Monthly Notices of the Royal Astronomical Society|volume=393|issue=1|pages=L21–L25|arxiv=0811.0673|bibcode=2009MNRAS.393L..21T |doi=10.1111/j.1745-3933.2008.00590.x|doi-access= free|s2cid=18141997}}</ref> Bodies around Alpha Centauri A would be able to orbit at slightly farther distances due to its stronger gravity. In addition, the lack of any brown dwarfs or gas giants in close orbits around Alpha Centauri make the likelihood of terrestrial planets greater than otherwise.<ref name="lackofany">{{cite journal|last1=Quintana |first1= E. V.|last2=Lissauer |first2= J. J. |last3=Chambers |first3= J. E.|last4=Duncan |first4= M. J.|title=Terrestrial Planet Formation in the Alpha Centauri System|journal=Astrophysical Journal|year=2002|volume=576|issue=2|pages=982–996|doi=10.1086/341808 |bibcode=2002ApJ...576..982Q|citeseerx=10.1.1.528.4268|s2cid= 53469170}}</ref> A theoretical study indicates that a radial velocity analysis might detect a hypothetical planet of {{Earth mass|1.8|link=y}} in Alpha Centauri B's [[Circumstellar habitable zone|habitable zone]].<ref name=guedesetal2008>{{cite journal|first1=Javiera M.|last1=Guedes|first2=Eugenio J.|last2=Rivera|first3=Erica|last3=Davis|first4=Gregory|last4=Laughlin |first5=Elisa V.|last5=Quintana|first6=Debra A.|last6=Fischer|title=Formation and Detectability of Terrestrial Planets Around Alpha Centauri B|journal=Astrophysical Journal|volume=679|issue=2|pages=1582–1587 |arxiv=0802.3482|doi=10.1086/587799|bibcode=2008ApJ...679.1582G|year=2008|s2cid=12152444}}</ref> Radial velocity measurements of Alpha Centauri B made with the [[High Accuracy Radial Velocity Planet Searcher]] [[spectrograph]] were sufficiently sensitive to detect a {{Earth mass|4|link=y}} planet within the habitable zone of the star (i.e. with an orbital period P = 200 days), but no planets were detected.<ref name="Dumusque">{{cite journal|last1=Dumusque|first1=X.|last2=Pepe |first2= F.|last3=Lovis |first3= C. |last4=Ségransan |first4= D.|last5=Sahlmann |first5= J.|last6=Benz |first6= W.|last7=Bouchy |first7= F.|author8-link=Michel Mayor|last8=Mayor |first8= M.|author9-link=Didier Queloz|last9=Queloz |first9= D.|author10=Santos, N.|author11-link=Stéphane Udry|last11=Udry |first11= S.|title=An Earth mass planet orbiting Alpha Centauri B|journal=Nature|volume=490|issue=7423|pages=207–211|date=17 October 2012 |url=http://www.eso.org/public/archives/releases/sciencepapers/eso1241/eso1241a.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://www.eso.org/public/archives/releases/sciencepapers/eso1241/eso1241a.pdf |archive-date=2022-10-09 |url-status=live|doi=10.1038/nature11572|access-date=17 October 2012|bibcode=2012Natur.491..207D|pmid=23075844|s2cid=1110271}}</ref> Current estimates place the probability of finding an Earth-like planet around Alpha Centauri at roughly 75%.<ref name=miniature>{{cite AV media |last1=Billings |first1=Lee |title=Miniature Space Telescope Could Boost the Hunt for "Earth Proxima" |medium = video |website=[[Scientific American]] (scientificamerican.com) |url=http://www.scientificamerican.com/article/miniature-space-telescope-could-boost-the-hunt-for-earth-proxima-video/ }}</ref> The observational thresholds for planet detection in the habitable zones by the radial velocity method are currently (2017) estimated to be about {{Earth mass|53}} for Alpha Centauri A, {{Earth mass|8.4}} for Alpha Centauri B, and {{Earth mass|0.47}} for [[Proxima Centauri]].<ref name=Zhao2018>{{cite journal |last1=Zhao |first1=L. |last2=Fischer |first2= D. |last3=Brewer |first3= J. |last4=Giguere |first4= M. |last5=Rojas-Ayala |first5= B. |date=January 2018 |title=Planet detectability in the Alpha Centauri system |journal=[[Astronomical Journal]] |volume=155 |issue=1 |page=12 |arxiv=1711.06320 |doi=10.3847/1538-3881/aa9bea |doi-access=free |bibcode=2018AJ....155...24Z |s2cid=118994786 |url=http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1711.06320 |access-date=29 December 2017 }}</ref> Early computer-generated models of planetary formation predicted the existence of [[terrestrial planet]]s around [[Circumbinary planet|both Alpha Centauri A and B]],<ref name=guedesetal2008/><ref name=Quintna-Lissr-2007/> but most recent numerical investigations have shown that the gravitational pull of the companion star renders the accretion of planets difficult.<ref name=Thebault-2009/><ref>{{cite journal |first1 = M. |last1 = Barbieri |first2 = F. |last2 = Marzari |first3 = H. |last3 = Scholl |year=2002|title=Formation of terrestrial planets in close binary systems: The case of {{nobr|α Centauri A}} |journal=[[Astronomy & Astrophysics]] |volume=396 |issue=1 |pages=219–224 |doi=10.1051/0004-6361:20021357 |bibcode=2002A&A...396..219B|arxiv=astro-ph/0209118|s2cid=119476010}}</ref> Despite these difficulties, given the similarities to the Sun in [[spectral type]]s, star type, age and probable stability of the orbits, it has been suggested that this stellar system could hold one of the best possibilities for harbouring [[extraterrestrial life]] on a potential planet.<ref name="Wiegert">{{cite journal |first1=P.A. |last1=Wiegert |first2=M.J. |last2=Holman |year=1997 |title=The stability of planets in the Alpha Centauri system |journal=The Astronomical Journal |volume=113 |pages=1445–1450|bibcode=1997AJ....113.1445W |doi=10.1086/118360 |arxiv=astro-ph/9609106 |s2cid=18969130}}</ref><ref name=lackofany/><ref>{{cite journal |first1=J.J. |last1=Lissauer |first2=E.V. |last2=Quintana |first3=J.E. |last3=Chambers |first4=M.J. |last4=Duncan |first5=F.C. |last5=Adams |year=2004 |title=Terrestrial planet formation in binary star systems |journal=Revista Mexicana de Astronomía y Astrofísica |series = Serie de Conferencias |volume=22 |pages=99–103 |bibcode=2004RMxAC..22...99L |arxiv=0705.3444}}</ref><ref name=Quintna-Lissr-2007>{{cite book |last1=Quintana |first1=Elisa V. |last2=Lissauer |first2=Jack J. |year=2007 |section=Terrestrial planet formation in binary star systems |title=Planets in Binary Star Systems |editor-first=Nader |editor-last=Haghighipour |publisher=Springer |pages=265–284 |isbn=978-90-481-8687-7 |url=https://books.google.com/books?id=kyf7vgv6FSYC&pg=PA265}}</ref> In the [[Solar System]], it was once thought that [[Jupiter]] and [[Saturn]] were probably crucial in perturbing [[comet]]s into the inner Solar System, providing the inner planets with a source of water and various other ices.<ref name=Croswell>{{cite magazine |last=Croswell |first=Ken |date=April 1991 |title=Does Alpha Centauri have intelligent life? |magazine=[[Astronomy Magazine]] |volume=19 |issue=4 |pages=28–37 |bibcode=1991Ast....19d..28C }}</ref> However, since isotope measurements of the [[deuterium]] to [[hydrogen]] (D/H) ratio in comets [[Halley's Comet|Halley]], [[Comet Hyakutake|Hyakutake]], [[Comet Hale–Bopp|Hale–Bopp]], 2002T7, and Tuttle yield values approximately twice that of Earth's oceanic water, more recent models and research predict that less than 10% of Earth's water was supplied from comets. In the {{nobr|α Centauri}} system, Proxima Centauri may have influenced the planetary disk as the {{nobr|α Centauri}} system was forming, enriching the area around Alpha Centauri with volatile materials.<ref>{{cite web |first=Paul |last=Gilster|date=5 July 2006 |title=Proxima Centauri and habitability |website=Centauri Dreams |url=http://www.centauri-dreams.org/?p=726 |access-date=12 August 2010}}</ref> This would be discounted if, for example, {{nobr|α Centauri B}} happened to have [[gas giant]]s orbiting {{nobr|α Centauri A}} (or vice versa), or if {{nobr|α Centauri A}} and B themselves were able to perturb comets into each other's inner systems, as Jupiter and Saturn presumably have done in the Solar System.<ref name=Croswell/> Such icy bodies probably also reside in [[Oort cloud]]s of other planetary systems. When they are influenced gravitationally by either the gas giants or disruptions by passing nearby stars, many of these icy bodies then travel star-wards.<ref name=Croswell/> Such ideas also apply to the close approach of Alpha Centauri or other stars to the Solar system, when, in the distant future, the [[Oort Cloud]] might be disrupted enough to increase the number of active comets.<ref name=Matthews/> To be in the [[habitable zone]], a planet around Alpha Centauri A would have an orbital radius of between about 1.2 and {{val|2.1|ul=AU}} so as to have similar planetary temperatures and conditions for liquid water to exist.<ref name=Kaltenegger2013>{{cite journal |last1=Kaltenegger |first1=Lisa |last2=Haghighipour |first2=Nader |year=2013 |title=Calculating the habitable zone of binary star systems. I. S-type binaries|journal=[[The Astrophysical Journal]] |volume=777 |issue=2 |page=165 |bibcode=2013ApJ...777..165K |arxiv=1306.2889 |s2cid=118414142 |doi=10.1088/0004-637X/777/2/165 |doi-access=free }}</ref> For the slightly less luminous and cooler {{nobr|α Centauri B}}, the habitable zone is between about 0.7 and {{val|1.2|u=AU}}.<ref name=Kaltenegger2013/> With the goal of finding evidence of such planets, both Proxima Centauri and {{nobr|α Centauri AB}} were among the listed "Tier-1" target stars for [[NASA]]'s [[Space Interferometry Mission]] (S.I.M.). Detecting planets as small as three Earth-masses or smaller within two AU of a "Tier-1" target would have been possible with this new instrument.<ref name="numbers">{{citation-attribution|1={{cite press release |url=http://www.jpl.nasa.gov/news/features.cfm?feature=1209 |title=Planet hunting by numbers |publisher=Jet Propulsion Laboratory|date=18 October 2006|access-date=24 April 2007 |archive-date=4 August 2010 |archive-url=https://web.archive.org/web/20100804160702/http://www.jpl.nasa.gov/news/features.cfm?feature=1209 |url-status=dead}} }}</ref> The S.I.M. mission, however, was cancelled due to financial issues in 2010.<ref>{{cite web|last1=Mullen|first1=Leslie|title=Rage Against the Dying of the Light|url=http://www.astrobio.net/exclusive/4005/rage-against-the-dying-of-the-light|date=2 June 2011|work=Astrobiology Magazine|access-date=7 June 2011|archive-url=https://web.archive.org/web/20110604121537/http://www.astrobio.net/exclusive/4005/rage-against-the-dying-of-the-light|archive-date=4 June 2011|url-status=dead}}</ref> === Circumstellar discs === Based on observations between 2007 and 2012, a study found a slight excess of emissions in the 24 [[Micrometre|μm]] (mid/far-infrared) band surrounding {{nobr|α Centauri AB}}, which may be interpreted as evidence for a sparse [[circumstellar disc]] or dense [[interplanetary dust cloud|interplanetary dust]].<ref name="Wiegart2014"/> The total mass was estimated to be between {{10^|-7}} to {{10^|-6}} the mass of the [[Moon]], or 10–100 times the mass of the Solar System's [[zodiacal cloud]].<ref name=Wiegart2014/> If such a disc existed around both stars, {{nobr|α Centauri A's}} disc would likely be stable to {{nobr|2.8 AU,}} and {{nobr|α Centauri B's}} would likely be stable to {{nobr|2.5 AU }}<ref name=Wiegart2014/> This would put A's disc entirely within the [[frost line (astrophysics)|frost line]], and a small part of B's outer disc just outside.<ref name=Wiegart2014> {{cite journal |last1 = Wiegert |first1 = J. |last2 = Liseau |first2 = R. |last3 = Thébault |first3 = P. |last4 = Olofsson |first4 = G. |last5 = Mora |first5 = A. |last6 = Bryden |first6 = G. |last7 = Marshall |first7 = J.P. |last8 = Eiroa |first8 = C. |last9 = Montesinos |first9 = B. |last10 = Ardila |first10 = D. |last11 = Augereau |first11 = J.C. |last12 = Bayo Aran |first12 = A. |last13 = Danchi |first13 = W.C. |last14 = del Burgo |first14 = C. |last15 = Ertel |first15 = S. |last16 = Fridlund |first16 = M.C.W. |last17 = Hajigholi |first17 = M. |last18 = Krivov |first18 = A.V. |last19 = Pilbratt |first19 = G.L. |last20 = Roberge |first20 = A. |last21 = White |first21 = G.J. |last22 = Wolf |first22 = S. |display-authors = 6 |date = March 2014 |title = How dusty is {{nobr|α Centauri?}} Excess or non-excess over the infrared photospheres of main-sequence stars |journal = [[Astronomy & Astrophysics]] |volume = 563 |page = A102 |doi = 10.1051/0004-6361/201321887 |bibcode = 2014A&A...563A.102W |arxiv = 1401.6896 |s2cid = 119198201 }} </ref> == View from this system == {{more citations needed|section|date=March 2023}} <!-- Some of this probably doesn't need actual sources just needs explanatory calculations. some of it --> [[File:Sky-from-alpha-centauri.jpg|thumb|upright=1.2|Looking towards the sky around [[Orion (constellation)|Orion]] from Alpha Centauri with [[Sirius]] near [[Betelgeuse]], [[Procyon]] in [[Gemini (constellation)|Gemini]], and the Sun in [[Cassiopeia (constellation)|Cassiopeia]] generated by [[Celestia]] |alt=Simulated night-sky image centred on Orion labelled with constellation names in red and star names in yellow, including Sirius very close to Betelgeuse and the Sun near Cassiopeia.]] [[File:Sun from Alpha Centauri.png|thumb|upright=1.2|Simulated night-sky image with a "W" of stars from [[Cassiopeia (constellation)|Cassiopeia]] connected by lines, and the Sun, labeled "Sol", as it would appear to the left of the "W"]] The sky from {{nobr|α Centauri AB}} would appear much as it does from the Earth, except that [[Centaurus]]'s brightest star, being {{nobr|α Centauri AB}} itself, would be absent from the constellation. The Sun would appear as a white star of [[apparent magnitude]] +0.5,<ref>{{cite magazine |first = Bob |last = King |date=2022-02-02 |title=See the Sun from other stars |department = Explore the Night Sky |magazine=Sky & Telescope |url=https://skyandtelescope.org/astronomy-blogs/explore-night-bob-king/see-the-sun-from-other-stars/ |access-date=2023-02-22}}</ref> roughly the same as the average brightness of [[Betelgeuse]] from Earth. It would be at the [[antipodal point]] of {{nobr|α Centauri AB's}} current [[right ascension]] and [[declination]], at {{RA|02|39|36}} {{DEC|+60|50|02.308}} (2000), in eastern [[Cassiopeia (constellation)|Cassiopeia]], easily outshining all the rest of the stars in the [[constellation]]. With the placement of the Sun east of the magnitude 3.4 star [[Epsilon Cassiopeiae]], nearly in front of the [[Heart Nebula]], the "W" line of stars of Cassiopeia would have a "/W" shape.<ref>{{cite web |last=Gilster |first=Paul |title=Alpha Centauri and the new astronomy |website=Centauri Dreams |date=2012-10-16 |url=https://www.centauri-dreams.org/2012/10/16/alpha-centauri-and-the-new-astronomy/ |access-date=2023-02-22}}</ref> Other nearby stars' placements may be affected somewhat drastically. [[Sirius]], at 9.2 light years away from the system, would still be the brightest star in the night sky, with a magnitude of -1.2, but would be located in [[Orion (constellation)|Orion]] less than a degree away from Betelgeuse. [[Procyon]], which would also be at a slightly further distance than from the Sun, would move to outshine [[Pollux (star)|Pollux]] in the middle of [[Gemini (constellation)|Gemini]]. A planet around either {{nobr|α Centauri A}} or B would see the other star as a very bright secondary. For example, an Earth-like planet at {{nobr|1.25 AU }} from {{nobr|α Cen A}} (with a revolution period of 1.34 years) would get Sun-like illumination from its primary, and {{nobr|α Cen B}} would appear 5.7–8.6 magnitudes dimmer (−21.0 to −18.2), 190–2,700 times dimmer than {{nobr|α Cen A}} but still 150–2,100 times brighter than the full Moon. Conversely, an Earth-like planet at {{nobr|0.71 AU }} from {{nobr|α Cen B}} (with a revolution period of 0.63 years) would get nearly Sun-like illumination from its primary, and {{nobr|α Cen A}} would appear 4.6–7.3 magnitudes dimmer (−22.1 to −19.4), 70 to 840 times dimmer than {{nobr|α Cen B}} but still 470–5,700 times brighter than the full Moon. Proxima Centauri would appear dim as one of many stars, being magnitude 4.5 at its current distance, and magnitude 2.6 at periastron.<ref>{{cite web |title=The view from Alpha Centauri |date=2020-08-28 |department = Alien Skies |website = Drew Ex Machina |url=https://www.drewexmachina.com/2020/08/28/alien-skies-the-view-from-alpha-centauri/ |access-date=2023-02-22}}</ref> == Future exploration == {{See also|2069 Alpha Centauri mission}} [[File:PIA18003-NASA-WISE-StarsNearSun-20140425-2 correction.png|thumb|upright=1.2|Diagram of the [[List of nearest stars|closest stars]] to the Sun, within 7.5 light years|alt=Series of partial circles centred on a small yellow disk labelled "Sun", each circle labelled with a distance, and several other small disks labelled with the names of stars]] Alpha Centauri is a first target for crewed or robotic [[Interstellar travel|interstellar exploration]]. Using current spacecraft technologies, crossing the distance between the Sun and Alpha Centauri would take several millennia, though the possibility of [[nuclear pulse propulsion]] or laser [[light sail]] technology, as considered in the [[Breakthrough Starshot]] program, could make the journey to Alpha Centauri in 20 years.<ref name=NYT-20160412-db>{{cite news |url=https://www.nytimes.com/2016/04/13/science/alpha-centauri-breakthrough-starshot-yuri-milner-stephen-hawking.html |title=A visionary project aims for Alpha Centauri, a star 4.37 light-years away |newspaper=[[The New York Times]] |last=Overbye |first=Dennis |author-link=Dennis Overbye |date=12 April 2016 |access-date=12 April 2016}}</ref><ref>{{cite news |first=Ian |last=O'Neill |date=8 July 2008 |title=How long would it take to travel to the nearest star? |website=[[Universe Today]] |url=http://www.universetoday.com/2008/07/08/how-long-would-it-take-to-travel-to-the-nearest-star}}</ref><ref>{{cite news|url=https://www.npr.org/sections/thetwo-way/2016/04/12/473960826|title=Forget Starships: New Proposal Would Use 'Starchips' To Visit Alpha Centauri|newspaper=NPR |last=Domonoske |first=Camila|date=12 April 2016|access-date=14 April 2016}}</ref> An objective of such a mission would be to make a fly-by of, and possibly photograph, planets that might exist in the system.<ref name="starshot">{{cite web|url=https://breakthroughinitiatives.org/Initiative/3|title=Starshot|publisher=Breakthrough Initiatives|access-date=10 January 2017}}</ref><ref name="nytimes20160412">{{cite news |url=https://www.nytimes.com/2016/04/13/science/alpha-centauri-breakthrough-starshot-yuri-milner-stephen-hawking.html |title=Reaching for the stars, across 4.37 light-years |newspaper=[[The New York Times]] |author-link=Dennis Overbye |date=12 April 2016|access-date=10 January 2017}}</ref> The existence of [[Proxima Centauri b]], announced by the [[European Southern Observatory]] (ESO) in August 2016, would be a target for the Starshot program.<ref name="starshot"/><ref name="nytimes20160824">{{cite news|url=https://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html |archive-url=https://ghostarchive.org/archive/20220101/https://www.nytimes.com/2016/08/25/science/earth-planet-proxima-centauri.html |archive-date=2022-01-01 |url-access=limited|title=One star over, a planet that might be another Earth |newspaper=[[The New York Times]] |first=Kenneth |last=Chang |date=24 August 2016 |access-date=10 January 2017}}{{cbignore}}</ref> [[NASA]] released a mission concept in 2017 that would [[2069 Alpha Centauri mission|send a spacecraft to Alpha Centauri in 2069]], scheduled to coincide with the 100th anniversary of the first crewed lunar landing in 1969, {{nobr|[[Apollo 11]].}} Even at speed 10% of the [[speed of light]] (about 108 million km/h), which NASA experts say may be possible, it would take a spacecraft 44 years to reach the constellation, by the year 2113, and would take another 4 years for a signal, by the year 2117 to reach Earth. The concept received no further funding or development.<ref>{{cite web |url=https://www.newscientist.com/article/mg23631576-000-exclusive-nasa-has-begun-plans-for-a-2069-interstellar-mission/ |title=NASA has begun plans for a 2069 interstellar mission|work=[[New Scientist]] |publisher=Kingston Acquisitions |last1=Wenz |first1=John |date=19 December 2017|accessdate=August 29, 2022}}</ref><ref>{{cite magazine |url=https://www.newsweek.com/alien-life-alpha-centauri-nasa-wants-find-out-super-fast-2069-mission-752528 |title = Do aliens live at Alpha Centauri? NASA wants to send a mission in 2069 to find Out |magazine=[[Newsweek]] }}</ref> ==In culture== Alpha Centauri has been recognized and associated throughout history, particularly in the [[Southern Hemisphere]]. [[Polynesians]] have been using Alpha Centauri for their [[Polynesian navigation|star navigation]] and have called it Kamailehope. In the [[Ngarrindjeri]] culture of Australia, Alpha Centauri represents with [[Beta Centauri]] two sharks chasing a [[stingray]], the [[Southern Cross]], and in [[Inca]]n culture it with Beta Centauri form the eyes of a [[llama]]-shaped [[Constellation#Dark cloud constellations|dark constellation]] embedded in the band of stars that the visible [[Milky Way]] forms in the sky. In ancient Egypt it was also revered and in China it is known as part of the South Gate asterism.<ref>{{cite web | title=Alpha Centauri, the star system closest to our sun | website=Earth & Sky | date=16 April 2023 | url=https://earthsky.org/brightest-stars/alpha-centauri-is-the-nearest-bright-star/#:~:text=Alpha%20Centauri%20has%20played%20a,stars%20of%20the%20Southern%20Cross. | access-date=March 13, 2024}}</ref> The [[Sagan Planet Walk]] in [[Ithaca, New York]], is a walkable scale model of the solar system. An obelisk representing the scaled position of Alpha Centauri has been added at [[ʻImiloa Astronomy Center]] in Hawaii.<ref name="Couillard">{{cite web|last=Couillard|first=Sherri|title=Sagan Planet Walk Expands to Hawaii|url=http://cornellsun.com/node/53167|access-date=19 November 2012|work=Cornell Daily Sun|url-status=dead|archive-url=https://web.archive.org/web/20130311192420/http://cornellsun.com/node/53167|archive-date=11 March 2013}}</ref> {{Excerpt|Stars in fiction#Real stars|paragraph=2}} == See also == * [[Project Longshot]] == Notes == {{notelist}} == References == {{reflist|25em}} == External links == {{Commons category|Alpha Centauri}} * {{cite web |title = SIMBAD observational data |website = simbad.u-strasbg.fr |url = http://simbad.u-strasbg.fr/sim-id.pl?protocol=html&Ident=alpha+centauri }} * {{cite web |title = Sixth Catalogue of Orbits of Visual Binary Stars |publisher = [[US Naval Observatory]] |website = usno.navy.mil |url = http://ad.usno.navy.mil/wds/orb6.html |url-status = dead <!-- presumed --> |archive-url = https://web.archive.org/web/20090412084731/http://ad.usno.navy.mil/wds/orb6.html |archive-date = 2009-04-12 }} * {{cite web |title = The Imperial Star |department = Alpha Centauri |website = southastrodel.com |url = http://www.southastrodel.com/PageAlphaCen001.htm }} * {{cite web |title = A voyage to Alpha Centauri |department = Alpha Centauri |website = southastrodel.com |url = http://www.southastrodel.com/PageAlphaCen006.htm }} * {{cite web |title = Immediate history of Alpha Centauri |department = Alpha Centauri |website = southastrodel.com |url = http://www.southastrodel.com/PageAlphaCen006.htm }} * {{cite web |title = Alpha Centauri |department = Stars |series = eSky |website = glyphweb.com |url = http://www.glyphweb.com/esky/stars/alphacentauri.html }} === Hypothetical planets or exploration === * {{cite web |title = Alpha Centauri system |department = Nearby stars |series = Astronomy |website = jumk.de |url = http://jumk.de/astronomie/near-stars/alpha-centauri.shtml }} * {{cite web |title = O sistema Alpha Centauri |website = uranometrianova.pro.br |language = Portuguese |url = http://www.uranometrianova.pro.br/astronomia/AA002/alphacen.htm |archive-url=https://web.archive.org/web/20160303190444/http://www.uranometrianova.pro.br/astronomia/AA002/alphacen.htm |archive-date=3 March 2016 }} * {{cite web |title = Alpha Centauri |website = alpha-centauri.pt |publisher = Associação de Astronomia |language = Portuguese |url = http://www.alpha-centauri.pt/ }} * {{cite news |last=Thompson |first=Andrea |date=7 March 2008 |title=Nearest star system might harbor Earth twin |department = Science / Astronomy |website=Space.com |url=http://www.space.com/scienceastronomy/080307-another-earth.html |access-date=18 November 2021 |url-status=dead |archive-url=https://web.archive.org/web/20080602011008/http://www.space.com/scienceastronomy/080307-another-earth.html |archive-date=2 June 2008 }} {{Sky|14|39|36.4951|-|60|50|02.308|4}} {{Alpha Centauri}} {{Nearest systems|1}} {{Stars of Centaurus}} {{2021 in space}} {{Authority control}} {{Portal bar|Astronomy|Stars|Spaceflight}} [[Category:Alpha Centauri| ]] [[Category:G-type main-sequence stars]] [[Category:K-type main-sequence stars]] [[Category:M-type main-sequence stars]] [[Category:Solar analogs|Centauri, Alpha]] [[Category:Maunder Minimum]] [[Category:Triple star systems]] [[Category:Hypothetical planetary systems]]<!-- Stars A & B have no confirmed planets; Proxima is categorized separately --> [[Category:Centaurus]] [[Category:Stars with proper names|Rigil Kentaurus]] [[Category:Bayer objects|Centauri, Alpha]] [[Category:Durchmusterung objects|PD-60 05483]] [[Category:Gliese and GJ objects|0559]] [[Category:Henry Draper Catalogue objects|128620 and 128621]] [[Category:Hipparcos objects|071681 and 071683]] [[Category:Bright Star Catalogue objects|5759 and 5760]] [[Category:Articles containing video clips]] [[Category:Astronomical objects discovered in 1689|16891215]] [[Category:Astronomical objects known since antiquity]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:10^
(
edit
)
Template:2021 in space
(
edit
)
Template:Alpha Centauri
(
edit
)
Template:Anchor
(
edit
)
Template:Authority control
(
edit
)
Template:Blockquote
(
edit
)
Template:Cbignore
(
edit
)
Template:Citation-attribution
(
edit
)
Template:Citation needed
(
edit
)
Template:Cite AV media
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite encyclopedia
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite magazine
(
edit
)
Template:Cite news
(
edit
)
Template:Cite press release
(
edit
)
Template:Cite report
(
edit
)
Template:Cite web
(
edit
)
Template:Comma separated entries
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:Crossreference
(
edit
)
Template:Cvt
(
edit
)
Template:DEC
(
edit
)
Template:Dead link
(
edit
)
Template:Earth mass
(
edit
)
Template:Earth radius
(
edit
)
Template:Efn
(
edit
)
Template:Error
(
edit
)
Template:Ety
(
edit
)
Template:Excerpt
(
edit
)
Template:Failed verification
(
edit
)
Template:Hatnote group
(
edit
)
Template:IPAc-en
(
edit
)
Template:In lang
(
edit
)
Template:Lang
(
edit
)
Template:Location map
(
edit
)
Template:Main
(
edit
)
Template:Main other
(
edit
)
Template:Math
(
edit
)
Template:More citations needed
(
edit
)
Template:Mvar
(
edit
)
Template:Nearest systems
(
edit
)
Template:Nobr
(
edit
)
Template:Notelist
(
edit
)
Template:Nowrap
(
edit
)
Template:OrbitboxPlanet hypothetical
(
edit
)
Template:Orbitbox end
(
edit
)
Template:Orbitbox planet begin
(
edit
)
Template:Portal bar
(
edit
)
Template:RA
(
edit
)
Template:Reflist
(
edit
)
Template:See also
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Sky
(
edit
)
Template:Solar luminosity
(
edit
)
Template:Solar mass
(
edit
)
Template:Starbox astrometry
(
edit
)
Template:Starbox begin
(
edit
)
Template:Starbox catalog
(
edit
)
Template:Starbox character
(
edit
)
Template:Starbox detail
(
edit
)
Template:Starbox end
(
edit
)
Template:Starbox image
(
edit
)
Template:Starbox observe 2s
(
edit
)
Template:Starbox orbit
(
edit
)
Template:Starbox reference
(
edit
)
Template:Stars of Centaurus
(
edit
)
Template:Use British English
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Val
(
edit
)