Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ambiguity
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of uncertainty of meaning in which several interpretations are plausible}} {{Other uses}} {{Redirect|Ambiguous|the film|Ambiguous (film)}} {{Copy edit|date=January 2025}} {{Use dmy dates|date=February 2020}} [[File:Alice 05a-1116x1492.jpg|thumb|250px|alt=Drawing of the back an anthropomorphic caterpillar, seated on a toadstool amid grass and flowers, blowing smoke from a hookah; a blonde girl in an old-fashioned frock is standing on tiptoe to peer at the caterpillar over the toadstool's edge|Sir [[John Tenniel]]'s illustration of the [[Caterpillar (Alice's Adventures in Wonderland)|Caterpillar]] for [[Lewis Carroll]]'s ''[[Alice's Adventures in Wonderland]]'' is noted for its ambiguous central figure, whose head can be viewed as either a man's face with a pointed nose and chin smoking a pipe, or as the end of an actual [[caterpillar]], with the first two right "true" legs visible (1865).<ref>"And do you see its long nose and chin? At least, they ''look'' exactly like a nose and chin, that is don't they? But they really ''are'' two of its legs. You know a Caterpillar has got ''quantities'' of legs: you can see more of them, further down." Carroll, Lewis. ''The Nursery "Alice"''. Dover Publications (1966), p 27.</ref>]] '''Ambiguity''' is the type of [[meaning (linguistics)|meaning]] in which a [[phrase]], statement, or resolution is not explicitly defined, making for several interpretations; others describe it as a concept or statement that has no real reference. A common aspect of ambiguity is [[uncertainty]]. It is thus an [[Attribute grammar|attribute]] of any idea or statement whose [[intention|intended]] meaning cannot be definitively resolved, according to a rule or process with a finite number of steps. (The [[prefix]] ''[[wikt:ambi-#Prefix|ambi]]-'' reflects the idea of "[[2 (number)|two]]", as in "two meanings"). The concept of ambiguity is generally contrasted with [[vagueness]]. In ambiguity, specific and distinct interpretations are permitted (although some may not be immediately obvious), whereas with vague information it is difficult to form any interpretation at the desired level of specificity. == Linguistic forms == Lexical ambiguity is contrasted with [[semantic ambiguity]].{{cn|date=February 2025}} The former represents a choice between a finite number of known and meaningful [[context (language use)|context]]-dependent interpretations. The latter represents a choice between any number of possible interpretations, none of which may have a standard agreed-upon meaning. This form of ambiguity is closely related to [[vagueness]]. Ambiguity in human language is argued to reflect principles of efficient communication.<ref>{{cite journal |last1=Piantadosi |first1=Steven |last2=Tily |first2=Hal |last3=Gibson |first3=Edward |title=The communicative function of ambiguity in language |journal=Cognition |date=2012 |volume=122 |issue=3 |pages=280–291 |doi=10.1016/j.cognition.2011.10.004 |pmid=22192697 |hdl=1721.1/102465 |s2cid=13726095 |url=https://www.sciencedirect.com/science/article/abs/pii/S0010027711002496|hdl-access=free }}</ref><ref>{{cite news |last1=Finn |first1=Emily |title=The advantage of ambiguity |url=https://news.mit.edu/2012/ambiguity-in-language-0119 |agency=MIT Press |date=January 19, 2012}}</ref> Languages that communicate efficiently will avoid sending information that is redundant with information provided in the context. This can be shown mathematically to result in a system that is ambiguous when context is neglected. In this way, ambiguity is viewed as a generally useful feature of a linguistic system. Linguistic ambiguity [[Ambiguity (law)|can be a problem in law]], because the interpretation of written documents and oral agreements is often of paramount importance.[[File:Structural analysis of an ambiguous spanish sentence.svg|thumb|Structural analysis of an ambiguous Spanish sentence:<br /> '''Pepe vio a Pablo enfurecido.'''<br />Interpretation 1: When Pepe was angry, then he saw Pablo.<br />Interpretation 2: Pepe saw that Pablo was angry.<br />Here, the syntactic tree in figure represents interpretation 2.]] === Lexical ambiguity === The [[Polysemy|lexical ambiguity]] of a word or phrase applies to it having more than one meaning in the language to which the word belongs.<ref name="SmallCottrell2013">{{cite book|author1=Steven L. Small|author2=Garrison W Cottrell|author3=Michael K Tanenhaus|title=Lexical Ambiguity Resolution: Perspective from Psycholinguistics, Neuropsychology and Artificial Intelligence|url=https://books.google.com/books?id=-J-fAgAAQBAJ|date=22 October 2013|publisher=Elsevier Science|isbn=978-0-08-051013-2}}</ref> "Meaning" here refers to whatever should be represented by a good dictionary. For instance, the word "bank" has several distinct lexical definitions, including "[[Bank|financial institution]]" and "[[Bank (geography)|edge of a river]]". Or consider "[[apothecary]]". One could say "I bought herbs from the apothecary". This could mean one actually spoke to the apothecary ([[pharmacist]]) or went to the apothecary ([[pharmacy]]). The context in which an ambiguous word is used often makes it clearer which of the meanings is intended. If, for instance, someone says "I put $100 in the bank", most people would not think someone used a shovel to dig in the mud. However, some linguistic contexts do not provide sufficient information to make a used word clearer. Lexical ambiguity can be addressed by [[algorithm]]ic methods that automatically associate the appropriate meaning with a word in context, a task referred to as [[word-sense disambiguation]]. The use of multi-defined words requires the author or speaker to clarify their context, and sometimes elaborate on their specific intended meaning (in which case, a less ambiguous term should have been used). The goal of clear concise communication is that the receiver(s) have no misunderstanding about what was meant to be conveyed. An exception to this could include a politician whose "[[weasel word]]s" and [[obfuscation]] are necessary to gain support from multiple [[Electoral district|constituents]] with [[mutually exclusive]] conflicting desires from his or her candidate of choice. Ambiguity is a powerful tool of [[political science]]. More problematic are words whose multiple meanings express closely related concepts. "Good", for example, can mean "useful" or "functional" (''That's a good hammer''), "exemplary" (''She's a good student''), "pleasing" (''This is good soup''), "moral" (''a good person'' versus ''the lesson to be learned from a story''), "[[righteous]]", etc. "I have a good daughter" is not clear about which sense is intended. The various ways to apply [[prefix]]es and [[suffix]]es can also create ambiguity ("unlockable" can mean "capable of being opened" or "impossible to lock"). === Semantic and syntactic ambiguity === [[File:Comedic Wet Cat Food sign in an ASDA supermarket.jpg|thumb|Which is wet: the food, or the cat?]] [[Semantic ambiguity]] occurs when a word, phrase or sentence, taken out of context, has more than one interpretation. In "We saw her duck" (example due to Richard Nordquist), the words "her duck" can refer either # to the person's bird (the noun "duck", modified by the possessive pronoun "her"), or # to a motion she made (the verb "duck", the subject of which is the objective pronoun "her", object of the verb "saw").<ref name="ReferenceA" /> [[Syntactic ambiguity]] arises when a sentence can have two (or more) different meanings because of the structure of the sentence—its syntax. This is often due to a modifying expression, such as a prepositional phrase, the application of which is unclear. "He ate the cookies on the couch", for example, could mean that he ate those cookies that were on the couch (as opposed to those that were on the table), or it could mean that he was sitting on the couch when he ate the cookies. "To get in, you will need an entrance fee of $10 or your voucher and your drivers' license." This could mean that you need EITHER ten dollars OR BOTH your voucher and your license. Or it could mean that you need your license AND you need EITHER ten dollars OR a voucher. Only rewriting the sentence, or placing appropriate punctuation can resolve a syntactic ambiguity.<ref name="ReferenceA">Critical Thinking, 10th ed., Ch 3, Moore, Brooke N. and Parker, Richard. McGraw-Hill, 2012</ref> For the notion of, and theoretic results about, syntactic ambiguity in artificial, [[formal languages]] (such as computer [[programming language]]s), see [[Ambiguous grammar]]. Usually, semantic and syntactic ambiguity go hand in hand. The sentence "We saw her duck" is also syntactically ambiguous. Conversely, a sentence like "He ate the cookies on the couch" is also semantically ambiguous. Rarely, but occasionally, the different parsings of a syntactically ambiguous phrase result in the same meaning. For example, the command "Cook, cook!" can be parsed as "Cook (noun used as [[vocative expression|vocative]]), cook (imperative verb form)!", but also as "Cook (imperative verb form), cook (noun used as vocative)!". It is more common that a syntactically unambiguous phrase has a semantic ambiguity; for example, the lexical ambiguity in "Your boss is a funny man" is purely semantic, leading to the response "Funny ha-ha or funny peculiar?" [[Spoken language]] can contain many more types of ambiguities that are called phonological ambiguities, where there is more than one way to compose a set of sounds into words. For example, "ice cream" and "I scream". Such ambiguity is generally resolved according to the context. A mishearing of such, based on incorrectly resolved ambiguity, is called a [[mondegreen]]. == Philosophy == Philosophers (and other users of logic) spend a lot of time and effort searching for and removing (or intentionally adding) ambiguity in arguments because it can lead to incorrect conclusions and can be used to deliberately conceal bad arguments. For example, a politician might say, "I oppose taxes which hinder economic growth", an example of a [[glittering generality]]. Some will think they oppose taxes in general because they hinder economic growth. Others may think they oppose only those taxes that they believe will hinder economic growth. In writing, the sentence can be rewritten to reduce possible misinterpretation, either by adding a comma after "taxes" (to convey the first sense) or by changing "which" to "that" (to convey the second sense) or by rewriting it in other ways. The devious politician hopes that each constituent will interpret the statement in the most desirable way, and think the politician supports everyone's opinion. However, the opposite can also be true—an opponent can turn a positive statement into a bad one if the speaker uses ambiguity (intentionally or not). The logical fallacies of amphiboly and equivocation rely heavily on the use of ambiguous words and phrases. In [[continental philosophy]] (particularly phenomenology and existentialism), there is much greater tolerance of ambiguity, as it is generally seen as an integral part of the human condition. [[Martin Heidegger]] argued that the relation between the subject and object is ambiguous, as is the relation of mind and body, and part and whole. In Heidegger's phenomenology, [[Dasein]] is always in a meaningful world, but there is always an underlying background for every instance of signification. Thus, although some things may be certain, they have little to do with Dasein's sense of care and existential anxiety, e.g., in the face of death. In calling his work Being and Nothingness an "essay in phenomenological ontology" [[Jean-Paul Sartre]] follows Heidegger in defining the human essence as ambiguous, or relating fundamentally to such ambiguity. [[Simone de Beauvoir]] tries to base an ethics on Heidegger's and Sartre's writings (The Ethics of Ambiguity), where she highlights the need to grapple with ambiguity: "as long as there have been philosophers and they have thought, most of them have tried to mask it ... And the ethics which they have proposed to their disciples has always pursued the same goal. It has been a matter of eliminating the ambiguity by making oneself pure inwardness or pure externality, by escaping from the sensible world or being engulfed by it, by yielding to eternity or enclosing oneself in the pure moment." Ethics cannot be based on the authoritative certainty given by mathematics and logic, or prescribed directly from the empirical findings of science. She states: "Since we do not succeed in fleeing it, let us, therefore, try to look the truth in the face. Let us try to assume our fundamental ambiguity. It is in the knowledge of the genuine conditions of our life that we must draw our strength to live and our reason for acting". Other continental philosophers suggest that concepts such as life, nature, and sex are ambiguous. Corey Anton has argued that we cannot be certain what is separate from or unified with something else: language, he asserts, divides what is not, in fact, separate. Following [[Ernest Becker]], he argues that the desire to 'authoritatively disambiguate' the world and existence has led to numerous ideologies and historical events such as genocide. On this basis, he argues that ethics must focus on 'dialectically integrating opposites' and balancing tension, rather than seeking a priori validation or certainty. Like the existentialists and phenomenologists, he sees the ambiguity of life as the basis of creativity. == Literature and rhetoric == In literature and rhetoric, ambiguity can be a useful tool. Groucho Marx's classic joke depends on a grammatical ambiguity for its humor, for example: "Last night I shot an elephant in my pajamas. How he got in my pajamas, I'll never know". Songs and poetry often rely on ambiguous words for artistic effect, as in the song title "Don't It Make My Brown Eyes Blue" (where "blue" can refer to the color, or to sadness). In the narrative, ambiguity can be introduced in several ways: motive, plot, character. [[F. Scott Fitzgerald]] uses the latter type of ambiguity with notable effect in his novel ''The Great Gatsby''. == Mathematical notation == [[Mathematical notation]] is a helpful tool that eliminates a lot of misunderstandings associated with natural language in [[physics]] and other [[science]]s. Nonetheless, there are still some inherent ambiguities due to [[Lexical semantics|lexical]], [[syntactic]], and [[Semantics|semantic]] reasons that persist in mathematical notation. === Names of functions === The '''ambiguity''' in the style of writing a [[Function (mathematics)|function]] should not be confused with a [[multivalued function]], which can (and should) be defined in a deterministic and unambiguous way. Several [[special function]]s still do not have established notations. Usually, the conversion to another notation requires to scale the argument or the resulting value; sometimes, the same name of the function is used, causing confusions. Examples of such underestablished functions: * [[Sinc function]] * [[Elliptic integral#Complete elliptic integral of the third kind|Elliptic integral of the third kind]]; translating elliptic integral form [[MAPLE]] to [[Mathematica]], one should replace the second argument to its square; dealing with complex values, this may cause problems. * [[Exponential integral]]<ref name="irene">{{cite book|url=http://www.math.sfu.ca/~cbm/aands/page_228.htm|title=Handbook on mathematical functions|last1=Abramovits|first1=M.|last2=Stegun|first2=I.|page=228}}</ref> * [[Hermite polynomial]]<ref name="irene" />{{rp|775}} === Expressions === Ambiguous expressions often appear in physical and mathematical texts. It is common practice to omit multiplication signs in mathematical expressions. Also, it is common to give the same name to a variable and a function, for example, {{nowrap|<math>f=f(x)</math>.}} Then, if one sees {{nowrap|<math>f=f(y+1)</math>,}} there is no way to distinguish whether it means <math>f=f(x)</math> '''multiplied''' by {{nowrap|<math>(y+1)</math>,}} or function <math>f</math> '''evaluated''' at argument equal to {{nowrap|<math>(y+1)</math>.}} In each case of use of such notations, the reader is supposed to be able to perform the deduction and reveal the true meaning. Creators of algorithmic languages try to avoid ambiguities. Many algorithmic languages ([[C++]] and [[Fortran]]) require the character * as a symbol of multiplication. The [[Wolfram Language]] used in [[Mathematica]] allows the user to omit the multiplication symbol, but requires square brackets to indicate the argument of a function; square brackets are not allowed for grouping of expressions. Fortran, in addition, does not allow use of the same name (identifier) for different objects, for example, function and variable; in particular, the expression <math>f = f(x)</math> is qualified as an error. The order of operations may depend on the context. In most [[programming language]]s, the operations of division and multiplication have equal priority and are executed from left to right. Until the last century, many editorials assumed that multiplication is performed first, for example, <math>a/bc</math> is interpreted as {{nowrap|<math>a/(bc)</math>;}} in this case, the insertion of parentheses is required when translating the formulas to an algorithmic language. In addition, it is common to write an argument of a function without parenthesis, which also may lead to ambiguity. In the [[scientific journal]] style, one uses roman letters to denote elementary functions, whereas variables are written using italics. For example, in mathematical journals the expression <math>s i n</math> does not denote the [[sine function]], but the product of the three variables {{nowrap|<math>s</math>,}} {{nowrap|<math>i</math>,}} {{nowrap|<math>n</math>,}} although in the informal notation of a slide presentation it may stand for {{nowrap|<math>\sin</math>.}} Commas in multi-component subscripts and superscripts are sometimes omitted; this is also potentially ambiguous notation. For example, in the notation {{nowrap|<math>T_{mnk}</math>,}} the reader can only infer from the context whether it means a single-index object, taken with the subscript equal to product of variables {{nowrap|<math>m</math>,}} <math>n</math> and {{nowrap|<math>k</math>,}} or it is an indication to a trivalent [[tensor]]. === Examples of potentially confusing ambiguous mathematical expressions === An expression such as <math>\sin^2\alpha/2</math> can be understood to mean either <math>(\sin(\alpha/2))^2</math> or {{nowrap|<math>(\sin \alpha)^2/2</math>.}} Often the author's intention can be understood from the context, in cases where only one of the two makes sense, but an ambiguity like this should be avoided, for example by writing {{nowrap|<math>\sin^2(\alpha/2)</math> or <math display="inline">\frac{1}{2}\sin^2\alpha</math>.}} The expression <math>\sin^{-1}\alpha</math> means <math>\arcsin(\alpha)</math> in several texts, though it might be thought to mean {{nowrap|<math>(\sin \alpha)^{-1}</math>,}} since <math>\sin^{n} \alpha</math> commonly means {{nowrap|<math>(\sin \alpha)^{n}</math>.}} Conversely, <math>\sin^2 \alpha</math> might seem to mean {{nowrap|<math>\sin(\sin \alpha)</math>,}} as this [[exponentiation]] notation usually denotes [[function iteration]]: in general, <math>f^2(x)</math> means {{nowrap|<math>f(f(x))</math>.}} However, for [[trigonometric]] and [[hyperbolic functions]], this notation conventionally means exponentiation of the result of function application. The expression <math>a/2b</math> can be interpreted as meaning {{nowrap|<math>(a/2)b</math>;}} however, it is more commonly understood to mean {{nowrap|<math>a/(2b)</math>.}} === Notations in quantum optics and quantum mechanics === It is common to define the [[coherent states]] in [[quantum optics]] with <math>~|\alpha\rangle~ </math> and states with fixed number of photons with {{nowrap|<math>~|n\rangle~</math>.}} Then, there is an "unwritten rule": the state is coherent if there are more Greek characters than Latin characters in the argument, and <math>n</math>-photon state if the Latin characters dominate. The ambiguity becomes even worse, if <math>~|x\rangle~</math> is used for the states with certain value of the coordinate, and <math>~|p\rangle~</math> means the state with certain value of the momentum, which may be used in books on [[quantum mechanics]]. Such ambiguities easily lead to confusions, especially if some normalized adimensional, [[dimensionless]] variables are used. Expression <math> |1\rangle </math> may mean a state with single photon, or the coherent state with mean amplitude equal to 1, or state with momentum equal to unity, and so on. The reader is supposed to guess from the context. === Ambiguous terms in physics and mathematics === Some physical quantities do not yet have established notations; their value (and sometimes even [[dimension]], as in the case of the [[Einstein coefficients]]), depends on the system of notations. Many terms are ambiguous. Each use of an ambiguous term should be preceded by the definition, suitable for a specific case. Just like [[Ludwig Wittgenstein]] states in [[Tractatus Logico-Philosophicus]]: "... Only in the context of a proposition has a name meaning."<ref>{{cite book|title=Tractatus Logico-Philosophicus|last=Wittgenstein|first=Ludwig|publisher=Dover Publications Inc.|year=1999|isbn=978-0-486-40445-5|page=39}}</ref> A highly confusing term is ''gain''. For example, the sentence "the gain of a system should be doubled", without context, means close to nothing. * It may mean that the ratio of the output voltage of an electric circuit to the input voltage should be doubled. * It may mean that the ratio of the output power of an electric or optical circuit to the input power should be doubled. * It may mean that the gain of the laser medium should be doubled, for example, doubling the population of the upper laser level in a quasi-two level system (assuming negligible absorption of the ground-state). The term ''intensity'' is ambiguous when applied to light. The term can refer to any of [[irradiance]], [[luminous intensity]], [[radiant intensity]], or [[radiance]], depending on the background of the person using the term. Also, confusions may be related with the use of [[atomic percent]] as measure of concentration of a [[dopant]], or [[Optical resolution|resolution]] of an imaging system, as measure of the size of the smallest detail that still can be resolved at the background of statistical noise. See also ''[[Accuracy and precision]]''. The [[Berry paradox]] arises as a result of systematic ambiguity in the meaning of terms such as "definable" or "nameable". Terms of this kind give rise to [[Virtuous circle and vicious circle|vicious circle]] fallacies. Other terms with this type of ambiguity are: satisfiable, true, false, function, property, class, relation, cardinal, and ordinal.<ref>Russell/Whitehead, ''Principia Mathematica''</ref> == Mathematical interpretation of ambiguity == [[File:Necker cube and impossible cube.svg|The [[Necker cube]] and [[impossible cube]], an underdetermined and overdetermined object, respectively.|thumb]] In mathematics and logic, ambiguity can be considered to be an instance of the logical concept of [[underdetermination]]—for example, <math>X=Y</math> leaves open what the value of <math>X</math> is—while overdetermination, except when like <math>X=1, X=1, X=1</math>, is a [[Self-refuting idea|self-contradiction]], also called [[inconsistency]], [[paradoxicalness]], or [[oxymoron]], or in mathematics an [[inconsistent system]]—such as {{nowrap|<math>X=2, X=3</math>,}} which has no solution. Logical ambiguity and self-contradiction is analogous to visual ambiguity and [[impossible object]]s, such as the Necker cube and impossible cube, or many of the drawings of [[M. C. Escher]].<ref>{{cite journal|last=Goldstein|first=Laurence|year=1996|title=Reflexivity, Contradiction, Paradox and M. C. Escher|journal=[[Leonardo (journal)|Leonardo]]|volume=29|issue=4|pages=299–308|doi=10.2307/1576313|jstor=1576313|s2cid=191403643}}</ref> == Constructed language == Some [[Constructed language|languages have been created]] with the intention of avoiding ambiguity, especially [[Polysemy|lexical ambiguity]]. [[Lojban]] and [[Loglan]] are two related languages that have been created for this, focusing chiefly on syntactic ambiguity as well. The languages can be both spoken and written. These languages are intended to provide a greater technical precision over big natural languages, although historically, such attempts at language improvement have been criticized. Languages composed from many diverse sources contain much ambiguity and inconsistency. The many exceptions to [[syntax]] and [[semantic]] rules are time-consuming and difficult to learn. == Biology == In [[structural biology]], ambiguity has been recognized as a problem for studying [[Protein structure|protein conformations]].<ref name="protein_ambig">{{Cite journal|last1=Postic|first1=Guillaume|last2=Ghouzam|first2=Yassine|last3=Chebrek|first3=Romain|last4=Gelly|first4=Jean-Christophe|date=2017|title=An ambiguity principle for assigning protein structural domains|journal=Science Advances|volume=3|issue=1|pages=e1600552|doi=10.1126/sciadv.1600552|issn=2375-2548|pmc=5235333|pmid=28097215|bibcode=2017SciA....3E0552P}}</ref> The analysis of a protein three-dimensional structure consists in dividing the macromolecule into subunits called [[Protein domain|domains]]. The difficulty of this task arises from the fact that different definitions of what a domain is can be used (e.g. folding autonomy, function, thermodynamic stability, or domain motions), which sometimes results in a single protein having different—yet equally valid—domain assignments. == Christianity and Judaism == [[Christianity]] and [[Judaism]] employ the concept of paradox synonymously with "ambiguity". Many Christians and Jews endorse [[Rudolf Otto]]'s description of the sacred as 'mysterium tremendum et fascinans', the awe-inspiring mystery that fascinates humans.{{Dubious|date=May 2019}} The [[apocrypha]]l [[Book of Judith]] is noted for the "ingenious ambiguity"<ref>[[Jerusalem Bible]] (1966), footnote a at Judith 11:5</ref> expressed by its heroine; for example, she says to the villain of the story, [[Holofernes]], "my lord will not fail to achieve his purposes", without specifying whether ''my lord'' refers to the villain or to God.<ref>{{bibleverse||Judith|11:6|NRSV}}</ref><ref>{{Cite book |last=deSilva |first=David A. |title=Introducing the Apocrypha: Message, Context, and Significance |date=2018-02-20 |publisher=Baker Books |isbn=978-1-4934-1307-2 |pages=102 |language=}}</ref> The orthodox Catholic writer [[G. K. Chesterton]] regularly employed paradox to tease out the meanings in common concepts that he found ambiguous or to reveal meaning often overlooked or forgotten in common phrases: the title of one of his most famous books, ''Orthodoxy'' (1908), itself employed such a paradox.<ref>Chesterton, G. K., [https://www.agape-biblia.org/orthodoxy/GKChesterton-Orthodoxy.pdf Orthodoxy], especially p. 32</ref> == Music == In [[music]], pieces or sections that confound expectations and may be or are interpreted simultaneously in different ways are ambiguous, such as some [[polytonality]], [[polymeter]], other ambiguous [[metre|meters]] or [[rhythm]]s, and ambiguous [[phrase (music)|phrasing]], or (Stein 2005, p. 79) any [[aspect of music]]. The [[music of Africa]] is often purposely ambiguous. To quote [[Donald Francis Tovey|Sir Donald Francis Tovey]] (1935, p. 195), "Theorists are apt to vex themselves with vain efforts to remove uncertainty just where it has a high aesthetic value." == Visual art == [[File:KB ambiguous image.png|thumb|This image can be interpreted three ways: as the letters "K B", as the mathematical inequality "1 < 13", or as the letters "''V'' D" with their mirror image.<ref name="protein_ambig" />]] In visual art, certain images are visually ambiguous, such as the [[Necker cube]], which can be interpreted in two ways. Perceptions of such objects remain stable for a time, then may flip, a phenomenon called [[multistable perception]]. The opposite of such [[ambiguous image]]s are [[impossible object]]s.<ref> {{cite book |last=Seckel |first=Al |author-link=Al Seckel |date=2009 |title=Optical Illusions: The Science of Visual Perception |url=https://www.fireflybooks.com/catalogue/product/8979-optical-illusions-the-science-of-visual-perception?search=Fall%202019 |location=Canada |publisher=Firefly Books Ltd. |isbn=978-1554071722 }}</ref> Pictures or photographs may also be ambiguous at the semantic level: the visual image is unambiguous, but the meaning and narrative may be ambiguous: is a certain facial expression one of excitement or fear, for instance? == Social psychology and the bystander effect == In [[social psychology]], ambiguity is a factor used in determining peoples' responses to various situations. High levels of ambiguity in an emergency (e.g. an unconscious man lying on a park bench) make witnesses less likely to offer any sort of assistance, due to the fear that they may have misinterpreted the situation and acted unnecessarily. Alternately, non-ambiguous emergencies (e.g. an injured person verbally asking for help) elicit more consistent intervention and assistance. With regard to the [[bystander effect]], studies have shown that emergencies deemed ambiguous trigger the appearance of the classic bystander effect (wherein more witnesses decrease the likelihood of any of them helping) far more than non-ambiguous emergencies.<ref>{{Cite journal |title=The Bystander Effect as a Function of Ambiguity and Emergency Character |journal=The Journal of Social Psychology |volume=100 |pages=145–146 |doi=10.1080/00224545.1976.9711917 |year=1976 |last1=Mason |first1=David |last2=Allen |first2=Bem P. }}</ref> == Computer science == In [[computer science]], the [[SI prefix]]es [[kilo-]], [[mega-]] and [[giga-]] were historically used in certain contexts to mean either the first three powers of 1024 (1024, 1024<sup>2</sup> and 1024<sup>3</sup>) contrary to the [[metric system]] in which these units unambiguously mean one thousand, one million, and one billion. This usage is particularly prevalent with electronic memory devices (e.g. [[DRAM]]) addressed directly by a binary machine register where a decimal interpretation makes no practical sense. Subsequently, the Ki, Mi, and Gi prefixes were introduced so that [[metric prefix#Binary prefixes|binary prefixes]] could be written explicitly, also rendering k, M, and G ''unambiguous'' in texts conforming to the new standard—this led to a ''new'' ambiguity in engineering documents lacking outward trace of the binary prefixes (necessarily indicating the new style) as to whether the usage of k, M, and G remains ambiguous (old style) or not (new style). 1 M (where M is ambiguously {{val|1,000,000}} or {{val|1,048,576}}) is ''less'' uncertain than the engineering value {{val|1.0|e=6}} (defined to designate the interval {{val|950,000|to|1,050,000}}). As non-volatile storage devices begin to exceed 1 GB in capacity (where the ambiguity begins to routinely impact the second significant digit), GB and TB almost always mean 10<sup>9</sup> and 10<sup>12</sup> [[bytes]]. == See also == {{div col|content= * [[Wikipedia:Ambiguous words]] * [[Abbreviation]] * [[Ambiguity (law)]] * [[Ambiguity tolerance–intolerance]] * [[Amphibology]] * [[Buzzword]] * [[Decision problem]] * [[Discrete mathematics]] * [[Double entendre]] * [[Equivocation]] * [[Essentially contested concept]] * [[Fallacy]] * [[Formal fallacy]] * [[Golden hammer]] * [[Informal fallacy]] * [[Pleonasm]] * [[Self reference]] * [[Semantics]] * [[Uncertainty]] * [[Volatility, uncertainty, complexity and ambiguity]] * [[Word-sense disambiguation]] }} == References == {{reflist}} == External links == {{Wikiquote}} {{Wiktionary|ambiguity}} * {{Commons category-inline}} * {{cite SEP |url-id=ambiguity |title=Ambiguity}} * {{InPho|idea|1883}} * {{PhilPapers|search|ambiguity}} * [http://www.gray-area.org/Research/Ambig/ Collection of Ambiguous or Inconsistent/Incomplete Statements] * [http://www.languagesoftware.net/articles/better-english-leaving-out-ambiguities/?article2pdf=1? Leaving out ambiguities when writing] {{Fallacies}} {{Philosophical logic}} {{Philosophy of language}} {{Authority control}} {{Formal semantics}} [[Category:Ambiguity| ]] [[Category:Semantics]] [[Category:Mathematical notation]] [[Category:Concepts in epistemology]] [[Category:Formal semantics (natural language)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Ambox
(
edit
)
Template:Authority control
(
edit
)
Template:Bibleverse
(
edit
)
Template:Cite SEP
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cn
(
edit
)
Template:Commons category-inline
(
edit
)
Template:Copy edit
(
edit
)
Template:Div col
(
edit
)
Template:Dubious
(
edit
)
Template:Fallacies
(
edit
)
Template:Fix
(
edit
)
Template:Formal semantics
(
edit
)
Template:InPho
(
edit
)
Template:Nowrap
(
edit
)
Template:Other uses
(
edit
)
Template:PhilPapers
(
edit
)
Template:Philosophical logic
(
edit
)
Template:Philosophy of language
(
edit
)
Template:Redirect
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Val
(
edit
)
Template:Wikiquote
(
edit
)
Template:Wiktionary
(
edit
)