Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Antilinear map
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Conjugate homogeneous additive map}} In [[mathematics]], a [[Function (mathematics)|function]] <math>f : V \to W</math> between two [[complex vector space]]s is said to be '''antilinear''' or '''conjugate-linear''' if <math display=block>\begin{alignat}{9} f(x + y) &= f(x) + f(y) && \qquad \text{ (additivity) } \\ f(s x) &= \overline{s} f(x) && \qquad \text{ (conjugate homogeneity) } \\ \end{alignat}</math> hold for all vectors <math>x, y \in V</math> and every [[complex number]] <math>s,</math> where <math>\overline{s}</math> denotes the [[complex conjugate]] of <math>s.</math> Antilinear maps stand in contrast to [[Linear operator|linear map]]s, which are [[additive map]]s that are [[Homogeneous map|homogeneous]] rather than [[Conjugate homogeneity|conjugate homogeneous]]. If the vector spaces are [[real vector space|real]] then antilinearity is the same as linearity. Antilinear maps occur in [[quantum mechanics]] in the study of [[T-symmetry|time reversal]] and in [[spinor calculus]], where it is customary to replace the bars over the basis vectors and the components of geometric objects by dots put above the indices. Scalar-valued antilinear maps often arise when dealing with [[Complex number|complex]] [[Inner product space|inner product]]s and [[Hilbert space]]s. == Definitions and characterizations == A function is called {{em|antilinear}} or {{em|conjugate linear}} if it is [[Additive map|additive]] and [[conjugate homogeneous]]. An {{em|antilinear functional}} on a vector space <math>V</math> is a scalar-valued antilinear map. A function <math>f</math> is called {{em|[[Additive map|additive]]}} if <math display=block>f(x + y) = f(x) + f(y) \quad \text{ for all vectors } x, y</math> while it is called {{em|[[Conjugate homogeneity|conjugate homogeneous]]}} if <math display=block>f(ax) = \overline{a} f(x) \quad \text{ for all vectors } x \text{ and all scalars } a.</math> In contrast, a linear map is a function that is additive and [[homogeneous]], where <math>f</math> is called {{em|homogeneous}} if <math display=block>f(ax) = a f(x) \quad \text{ for all vectors } x \text{ and all scalars } a.</math> An antilinear map <math>f : V \to W</math> may be equivalently described in terms of the [[linear map]] <math>\overline{f} : V \to \overline{W}</math> from <math>V</math> to the [[complex conjugate vector space]] <math>\overline{W}.</math> === Examples === ==== Anti-linear dual map ==== Given a complex vector space <math>V</math> of rank 1, we can construct an anti-linear dual map which is an anti-linear map <math display="block">l:V \to \Complex</math> sending an element <math>x_1 + iy_1</math> for <math>x_1,y_1 \in \R</math> to <math display="block">x_1 + iy_1 \mapsto a_1 x_1 - i b_1 y_1</math> for some fixed real numbers <math>a_1,b_1.</math> We can extend this to any finite dimensional complex vector space, where if we write out the standard basis <math>e_1, \ldots, e_n</math> and each standard basis element as <math display="block">e_k = x_k + iy_k</math> then an anti-linear complex map to <math>\Complex</math> will be of the form <math display="block">\sum_k x_k + iy_k \mapsto \sum_k a_k x_k - i b_k y_k</math> for <math>a_k,b_k \in \R.</math> ==== Isomorphism of anti-linear dual with real dual ==== The anti-linear dual<ref name=":0">{{Cite book|last=Birkenhake|first=Christina| url=https://www.worldcat.org/oclc/851380558 | title=Complex Abelian Varieties | date=2004 | publisher=Springer Berlin Heidelberg|others=Herbert Lange |isbn=978-3-662-06307-1| edition=Second, augmented| location=Berlin, Heidelberg| oclc=851380558}}</ref><sup>pg 36</sup> of a complex vector space <math>V</math> <math display="block">\operatorname{Hom}_{\overline{\Complex}}(V,\Complex)</math> is a special example because it is isomorphic to the real dual of the underlying real vector space of <math>V,</math> <math>\text{Hom}_\R(V,\R).</math> This is given by the map sending an anti-linear map <math display="block">\ell: V \to \Complex</math>to <math display="block">\operatorname{Im}(\ell) : V \to \R</math> In the other direction, there is the inverse map sending a real dual vector <math display="block">\lambda : V \to \R</math> to <math display="block">\ell(v) = -\lambda(iv) + i\lambda(v)</math> giving the desired map. == Properties == The [[Composition of relations|composite]] of two antilinear maps is a [[linear map]]. The class of [[semilinear map]]s generalizes the class of antilinear maps. == Anti-dual space == The vector space of all antilinear forms on a vector space <math>X</math> is called the {{em|algebraic [[anti-dual space]]}} of <math>X.</math> If <math>X</math> is a [[topological vector space]], then the vector space of all {{em|continuous}} antilinear functionals on <math>X,</math> denoted by <math display="inline">\overline{X}^{\prime},</math> is called the {{em|continuous anti-dual space}} or simply the {{em|anti-dual space}} of <math>X</math>{{sfn|Trèves|2006|pp=112-123}} if no confusion can arise. When <math>H</math> is a [[normed space]] then the canonical norm on the (continuous) anti-dual space <math display="inline">\overline{X}^{\prime},</math> denoted by <math display="inline">\|f\|_{\overline{X}^{\prime}},</math> is defined by using this same equation:{{sfn|Trèves|2006|pp=112–123}} <math display=block>\|f\|_{\overline{X}^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in \overline{X}^{\prime}.</math> This formula is identical to the formula for the {{em|[[dual norm]]}} on the [[continuous dual space]] <math>X^{\prime}</math> of <math>X,</math> which is defined by{{sfn|Trèves|2006|pp=112–123}} <math display=block>\|f\|_{X^{\prime}} ~:=~ \sup_{\|x\| \leq 1, x \in X} |f(x)| \quad \text{ for every } f \in X^{\prime}.</math> '''Canonical isometry between the dual and anti-dual''' The [[complex conjugate]] <math>\overline{f}</math> of a functional <math>f</math> is defined by sending <math>x \in \operatorname{domain} f</math> to <math display="inline">\overline{f(x)}.</math> It satisfies <math display=block>\|f\|_{X^{\prime}} ~=~ \left\|\overline{f}\right\|_{\overline{X}^{\prime}} \quad \text{ and } \quad \left\|\overline{g}\right\|_{X^{\prime}} ~=~ \|g\|_{\overline{X}^{\prime}}</math> for every <math>f \in X^{\prime}</math> and every <math display="inline">g \in \overline{X}^{\prime}.</math> This says exactly that the canonical antilinear [[Bijective map|bijection]] defined by <math display=block>\operatorname{Cong} ~:~ X^{\prime} \to \overline{X}^{\prime} \quad \text{ where } \quad \operatorname{Cong}(f) := \overline{f}</math> as well as its inverse <math>\operatorname{Cong}^{-1} ~:~ \overline{X}^{\prime} \to X^{\prime}</math> are antilinear [[Isometry|isometries]] and consequently also [[homeomorphism]]s. If <math>\mathbb{F} = \R</math> then <math>X^{\prime} = \overline{X}^{\prime}</math> and this canonical map <math>\operatorname{Cong} : X^{\prime} \to \overline{X}^{\prime}</math> reduces down to the [[Identity function|identity map]]. '''Inner product spaces''' If <math>X</math> is an [[inner product space]] then both the canonical norm on <math>X^{\prime}</math> and on <math>\overline{X}^{\prime}</math> satisfies the [[parallelogram law]], which means that the [[polarization identity]] can be used to define a {{em|canonical inner product on <math>X^{\prime}</math>}} and also on <math>\overline{X}^{\prime},</math> which this article will denote by the notations <math display=block>\langle f, g \rangle_{X^{\prime}} := \langle g \mid f \rangle_{X^{\prime}} \quad \text{ and } \quad \langle f, g \rangle_{\overline{X}^{\prime}} := \langle g \mid f \rangle_{\overline{X}^{\prime}}</math> where this inner product makes <math>X^{\prime}</math> and <math>\overline{X}^{\prime}</math> into Hilbert spaces. The inner products <math display="inline">\langle f, g \rangle_{X^{\prime}}</math> and <math display="inline">\langle f, g \rangle_{\overline{X}^{\prime}}</math> are antilinear in their second arguments. Moreover, the canonical norm induced by this inner product (that is, the norm defined by <math display="inline">f \mapsto \sqrt{\left\langle f, f \right\rangle_{X^{\prime}}}</math>) is consistent with the dual norm (that is, as defined above by the supremum over the unit ball); explicitly, this means that the following holds for every <math>f \in X^{\prime}:</math> <math display=block>\sup_{\|x\| \leq 1, x \in X} |f(x)| = \|f\|_{X^{\prime}} ~=~ \sqrt{\langle f, f \rangle_{X^{\prime}}} ~=~ \sqrt{\langle f \mid f \rangle_{X^{\prime}}}.</math> If <math>X</math> is an [[inner product space]] then the inner products on the dual space <math>X^{\prime}</math> and the anti-dual space <math display="inline">\overline{X}^{\prime},</math> denoted respectively by <math display="inline">\langle \,\cdot\,, \,\cdot\, \rangle_{X^{\prime}}</math> and <math display="inline">\langle \,\cdot\,, \,\cdot\, \rangle_{\overline{X}^{\prime}},</math> are related by<math display=block>\langle \,\overline{f}\, | \,\overline{g}\, \rangle_{\overline{X}^{\prime}} = \overline{\langle \,f\, | \,g\, \rangle_{X^{\prime}}} = \langle \,g\, | \,f\, \rangle_{X^{\prime}} \qquad \text{ for all } f, g \in X^{\prime}</math> and <math display=block>\langle \,\overline{f}\, | \,\overline{g}\, \rangle_{X^{\prime}} = \overline{\langle \,f\, | \,g\, \rangle_{\overline{X}^{\prime}}} = \langle \,g\, | \,f\, \rangle_{\overline{X}^{\prime}} \qquad \text{ for all } f, g \in \overline{X}^{\prime}.</math> == See also == * {{annotated link|Cauchy's functional equation}} * {{annotated link|Complex conjugate}} * {{annotated link|Complex conjugate vector space}} * {{annotated link|Fundamental theorem of Hilbert spaces}} * {{annotated link|Inner product space}} * {{annotated link|Linear map}} * {{annotated link|Matrix consimilarity}} * {{annotated link|Riesz representation theorem}} * {{annotated link|Sesquilinear form}} * {{annotated link|T-symmetry|Time reversal}} == Citations == {{reflist}} {{reflist|group=note}} == References == * Budinich, P. and Trautman, A. ''The Spinorial Chessboard''. Springer-Verlag, 1988. {{isbn|0-387-19078-3}}. (antilinear maps are discussed in section 3.3). * Horn and Johnson, ''Matrix Analysis,'' Cambridge University Press, 1985. {{isbn|0-521-38632-2}}. (antilinear maps are discussed in section 4.6). * {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} --> [[Category:Functions and mappings]] [[Category:Linear algebra]] [[Category:Types of functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Annotated link
(
edit
)
Template:Cite book
(
edit
)
Template:Em
(
edit
)
Template:Isbn
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Trèves François Topological vector spaces, distributions and kernels
(
edit
)