Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arg max
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Inputs at which function values are highest}} {{refimprove|date=October 2014}} [[File:Si_sinc.svg|thumb|350px|As an example, both unnormalised and normalised [[sinc]] functions above have <math>\operatorname{argmax}</math> of {0} because both attain their global maximum value of 1 at ''x'' = 0.<br /><br />The unnormalised sinc function (red) has ''arg min'' of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at ''x'' = Β±4.49. However, the normalised sinc function (blue) has ''arg min'' of {−1.43, 1.43}, approximately, because their global minima occur at ''x'' = Β±1.43, even though the minimum value is the same.<ref>"[http://physics.usyd.edu.au/teach_res/mp/doc/math_sinc_function.pdf The Unnormalized Sinc Function] {{Webarchive|url=https://web.archive.org/web/20170215045226/http://www.physics.usyd.edu.au/teach_res/mp/doc/math_sinc_function.pdf |date=2017-02-15 }}", University of Sydney</ref>]] In [[mathematics]], the '''arguments of the maxima''' (abbreviated '''arg max''' or '''argmax''') and '''arguments of the minima''' (abbreviated '''arg min''' or '''argmin''') are the input points at which a [[Function (mathematics)|function]] output value is [[Maxima and minima|maximized and minimized]], respectively.<ref group="note">For clarity, we refer to the input (''x'') as ''points'' and the output (''y'') as ''values;'' compare [[critical point (mathematics)|critical point]] and [[critical value (critical point)|critical value]].</ref> While the [[argument of a function|arguments]] are defined over the [[domain of a function]], the output is part of its [[codomain]]. == Definition == Given an arbitrary [[set (mathematics)|set]] {{nowrap|<math>X</math>,}} a [[totally ordered set]] {{nowrap|<math>Y</math>,}} and a function, {{nowrap|<math>f\colon X \to Y</math>,}} the <math>\operatorname{argmax}</math> over some subset <math>S</math> of <math>X</math> is defined by :<math>\operatorname{argmax}_S f := \underset{x \in S}{\operatorname{arg\,max}}\, f(x) := \{x \in S ~:~ f(s) \leq f(x) \text{ for all } s \in S \}.</math> If <math>S = X</math> or <math>S</math> is clear from the context, then <math>S</math> is often left out, as in <math>\underset{x}{\operatorname{arg\,max}}\, f(x) := \{ x ~:~ f(s) \leq f(x) \text{ for all } s \in X \}.</math> In other words, <math>\operatorname{argmax}</math> is the [[Set (mathematics)|set]] of points <math>x</math> for which <math>f(x)</math> attains the function's largest value (if it exists). <math>\operatorname{Argmax}</math> may be the [[empty set]], a [[Singleton (mathematics)|singleton]], or contain multiple elements. In the fields of [[convex analysis]] and [[variational analysis]], a slightly different definition is used in the special case where <math>Y = [-\infty,\infty] = \mathbb{R} \cup \{ \pm\infty \}</math> are the [[extended real numbers]].{{sfn|Rockafellar|Wets|2009|pp=1-37|ignore-err=yes}} In this case, if <math>f</math> is identically equal to <math>\infty</math> on <math>S</math> then <math>\operatorname{argmax}_S f := \varnothing</math> (that is, <math>\operatorname{argmax}_S \infty := \varnothing</math>) and otherwise <math>\operatorname{argmax}_S f</math> is defined as above, where in this case <math>\operatorname{argmax}_S f</math> can also be written as: :<math>\operatorname{argmax}_S f := \left\{ x \in S ~:~ f(x) = \sup {}_S f \right\}</math> where it is emphasized that this equality involving <math>\sup {}_S f</math> holds {{em|only}} when <math>f</math> is not identically <math>\infty</math> on {{nowrap|<math>S</math>.}}{{sfn|Rockafellar|Wets|2009|pp=1-37|ignore-err=yes}} === Arg min<!--'Arg min' redirects here--> === The notion of <math>\operatorname{argmin}</math> (or <math>\operatorname{arg\,min}</math>), which stands for '''argument of the minimum''', is defined analogously. For instance, :<math>\underset{x \in S}{\operatorname{arg\,min}} \, f(x) := \{ x \in S ~:~ f(s) \geq f(x) \text{ for all } s \in S \}</math> are points <math>x</math> for which <math>f(x)</math> attains its smallest value. It is the complementary operator of {{nowrap|<math>\operatorname{arg\,max}</math>.}} In the special case where <math>Y = [-\infty,\infty] = \R \cup \{ \pm\infty \}</math> are the [[extended real numbers]], if <math>f</math> is identically equal to <math>-\infty</math> on <math>S</math> then <math>\operatorname{argmin}_S f := \varnothing</math> (that is, <math>\operatorname{argmin}_S -\infty := \varnothing</math>) and otherwise <math>\operatorname{argmin}_S f</math> is defined as above and moreover, in this case (of <math>f</math> not identically equal to <math>-\infty</math>) it also satisfies: :<math>\operatorname{argmin}_S f := \left\{ x \in S ~:~ f(x) = \inf {}_S f \right\}.</math>{{sfn|Rockafellar|Wets|2009|pp=1-37|ignore-err=yes}} == Examples and properties == For example, if <math>f(x)</math> is <math>1 - |x|,</math> then <math>f</math> attains its maximum value of <math>1</math> only at the point <math>x = 0.</math> Thus :<math>\underset{x}{\operatorname{arg\,max}}\, (1 - |x|) = \{ 0 \}.</math> The <math>\operatorname{argmax}</math> operator is different from the <math>\max</math> operator. The <math>\max</math> operator, when given the same function, returns the {{em|[[Maxima and minima|maximum value]]}} of the function instead of the {{em|point or points}} that cause that function to reach that value; in other words :<math>\max_x f(x)</math> is the element in <math>\{ f(x) ~:~ f(s) \leq f(x) \text{ for all } s \in S \}.</math> Like <math>\operatorname{argmax},</math> max may be the empty set (in which case the maximum is undefined) or a singleton, but unlike <math>\operatorname{argmax},</math> <math>\operatorname{max}</math> may not contain multiple elements:<ref group=note>Due to the [[Antisymmetric relation|anti-symmetry]] of <math>\,\leq,</math> a function can have at most one maximal value.</ref> for example, if <math>f(x)</math> is <math>4 x^2 - x^4,</math> then <math>\underset{x}{\operatorname{arg\,max}}\, \left( 4 x^2 - x^4 \right) = \left\{-\sqrt{2}, \sqrt{2}\right\},</math> but <math>\underset{x}{\operatorname{max}}\, \left( 4 x^2 - x^4 \right) = \{ 4 \}</math> because the function attains the same value at every element of <math>\operatorname{argmax}.</math> Equivalently, if <math>M</math> is the maximum of <math>f,</math> then the <math>\operatorname{argmax}</math> is the [[level set]] of the maximum: :<math>\underset{x}{\operatorname{arg\,max}} \, f(x) = \{ x ~:~ f(x) = M \} =: f^{-1}(M).</math> We can rearrange to give the simple identity<ref group=note>This is an identity between sets, more particularly, between subsets of <math>Y.</math></ref> :<math>f\left(\underset{x}{\operatorname{arg\,max}} \, f(x) \right) = \max_x f(x).</math> If the maximum is reached at a single point then this point is often referred to as {{em|the}} <math>\operatorname{argmax},</math> and <math>\operatorname{argmax}</math> is considered a point, not a set of points. So, for example, :<math>\underset{x\in\mathbb{R}}{\operatorname{arg\,max}}\, (x(10 - x)) = 5</math> (rather than the [[Singleton (mathematics)|singleton]] set <math>\{ 5 \}</math>), since the maximum value of <math>x (10 - x)</math> is <math>25,</math> which occurs for <math>x = 5.</math><ref group="note">Note that <math>x (10 - x) = 25 - (x-5)^2 \leq 25</math> with equality if and only if <math>x - 5 = 0.</math></ref> However, in case the maximum is reached at many points, <math>\operatorname{argmax}</math> needs to be considered a {{em|set}} of points. For example :<math>\underset{x \in [0, 4 \pi]}{\operatorname{arg\,max}}\, \cos(x) = \{ 0, 2 \pi, 4 \pi \}</math> because the maximum value of <math>\cos x</math> is <math>1,</math> which occurs on this interval for <math>x = 0, 2 \pi</math> or <math>4 \pi.</math> On the whole real line :<math>\underset{x \in \mathbb{R}}{\operatorname{arg\,max}}\, \cos(x) = \left\{ 2 k \pi ~:~ k \in \mathbb{Z} \right\},</math> so an infinite set. Functions need not in general attain a maximum value, and hence the <math>\operatorname{argmax}</math> is sometimes the [[empty set]]; for example, <math>\underset{x\in\mathbb{R}}{\operatorname{arg\,max}}\, x^3 = \varnothing,</math> since <math>x^3</math> is [[Bounded function|unbounded]] on the real line. As another example, <math>\underset{x \in \mathbb{R}}{\operatorname{arg\,max}}\, \arctan(x) = \varnothing,</math> although [[Arc tangent|<math>\arctan</math>]] is bounded by <math>\pm\pi/2.</math> However, by the [[extreme value theorem]], a continuous real-valued function on a [[Interval (mathematics)|closed interval]] has a maximum, and thus a nonempty <math>\operatorname{argmax}.</math> ==See also== * [[Argument of a function]] * [[Maxima and minima]] * [[Mode (statistics)]] * [[Mathematical optimization]] * [[Kernel (linear algebra)]] * [[Preimage]] ==Notes== {{reflist|group=note}} ==References== {{reflist}} * {{Rockafellar Wets Variational Analysis 2009 Springer}} <!-- {{sfn|Rockafellar|Wets|2009|p=}} --> ==External links== *{{PlanetMath|urlname=argminandargmax|title=arg min and arg max}} [[Category:Elementary mathematics]] [[Category:Inverse functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Em
(
edit
)
Template:Nowrap
(
edit
)
Template:PlanetMath
(
edit
)
Template:Refimprove
(
edit
)
Template:Reflist
(
edit
)
Template:Rockafellar Wets Variational Analysis 2009 Springer
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Webarchive
(
edit
)