Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Arithmetic–geometric mean
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function of two positive real arguments}} {{about|the particular type of mean|the similarly named inequality|Inequality of arithmetic and geometric means}} [[File:Generalized means + agm.png|400px|thumb|right|Plot of the arithmetic–geometric mean <math>\operatorname{agm}(1,x)</math> among several [[generalized mean]]s.]] In [[mathematics]], the '''arithmetic–geometric mean''' (AGM or agM<ref name="Cox" />) of two [[positive real numbers]] {{math|''x''}} and {{math|''y''}} is the mutual limit of a sequence of [[arithmetic mean]]s and a sequence of [[geometric mean]]s. The arithmetic–geometric mean is used in fast [[algorithm]]s for [[exponential function|exponential]], [[trigonometric functions]], and other [[special functions]], as well as some [[mathematical constant]]s, in particular, [[computing π|computing {{mvar|π}}]]. The AGM is defined as the limit of the interdependent [[sequence]]s <math>a_i</math> and <math>g_i</math>. Assuming <math> x \geq y \geq 0</math>, we write:<math display=block>\begin{align} a_0 &= x,\\ g_0 &= y\\ a_{n+1} &= \tfrac12(a_n + g_n),\\ g_{n+1} &= \sqrt{a_n g_n}\, . \end{align}</math>These two sequences [[limit of a sequence|converge]] to the same number, the arithmetic–geometric mean of {{math|''x''}} and {{math|''y''}}; it is denoted by {{math|''M''(''x'', ''y'')}}, or sometimes by {{math|agm(''x'', ''y'')}} or {{math|AGM(''x'', ''y'')}}. The arithmetic–geometric mean can be extended to [[Complex number|complex numbers]] and, when the [[Branch point#Branch cuts|branches]] of the square root are allowed to be taken inconsistently, it is a [[multivalued function]].<ref name="Cox">{{cite journal |last=Cox |first=David |date=January 1984 |title=The Arithmetic-Geometric Mean of Gauss|url=https://www.researchgate.net/publication/248675540 |journal=L'Enseignement Mathématique|volume=30|issue=2|pages=275–330}}</ref> ==Example== To find the arithmetic–geometric mean of {{math|''a''<sub>0</sub> {{=}} 24}} and {{math|''g''<sub>0</sub> {{=}} 6}}, iterate as follows:<math display=block>\begin{array}{rcccl} a_1 & = & \tfrac12(24 + 6) & = & 15\\ g_1 & = & \sqrt{24 \cdot 6} & = & 12\\ a_2 & = & \tfrac12(15 + 12) & = & 13.5\\ g_2 & = & \sqrt{15 \cdot 12} & = & 13.416\ 407\ 8649\dots\\ & & \vdots & & \end{array}</math>The first five iterations give the following values: {| class="wikitable plainrowheaders" style="margin-left:2em;" |- ! scope="col" | {{math|''n''}} ! scope="col" | {{math|''a''<sub>''n''</sub>}} ! scope="col" | {{math|''g''<sub>''n''</sub>}} |- ! scope="row" | 0 | 24 | 6 |- ! scope="row" | 1 | {{underline|1}}5 | {{underline|1}}2 |- ! scope="row" | 2 | {{underline|13}}.5 | {{underline|13}}.416 407 864 998 738 178 455 042... |- ! scope="row" | 3 | {{underline|13.458}} 203 932 499 369 089 227 521... | {{underline|13.458}} 139 030 990 984 877 207 090... |- ! scope="row" | 4 | {{underline|13.458 171 481 7}}45 176 983 217 305... | {{underline|13.458 171 481 7}}06 053 858 316 334... |- ! scope="row" | 5 | {{underline|13.458 171 481 725 615 420 766 8}}20... | {{underline|13.458 171 481 725 615 420 766 8}}06... |} The number of digits in which {{math|''a''<sub>''n''</sub>}} and {{math|''g''<sub>''n''</sub>}} agree (underlined) approximately doubles with each iteration. The arithmetic–geometric mean of 24 and 6 is the common limit of these two sequences, which is approximately {{val|13.4581714817256154207668131569743992430538388544}}.<ref>[http://www.wolframalpha.com/input/?i=agm%2824%2C+6%29 agm(24, 6)] at [[Wolfram Alpha]]</ref> == History == The first algorithm based on this sequence pair appeared in the works of [[Joseph-Louis Lagrange|Lagrange]]. Its properties were further analyzed by [[Gauss]].<ref name="Cox"/> ==Properties== Both the geometric mean and arithmetic mean of two positive numbers {{mvar|x}} and {{mvar|y}} are between the two numbers. (They are ''strictly'' between when {{math|''x'' ≠ ''y''}}.) The geometric mean of two positive numbers is [[Inequality of arithmetic and geometric means|never greater than the arithmetic mean]].<ref>{{cite book |last=Bullen |first=P. S. |contribution=The Arithmetic, Geometric and Harmonic Means |date=2003 |url=http://link.springer.com/10.1007/978-94-017-0399-4_2 |title=Handbook of Means and Their Inequalities |pages=60–174 |access-date=2023-12-11 |place=Dordrecht |publisher=Springer Netherlands |language=en |doi=10.1007/978-94-017-0399-4_2 |isbn=978-90-481-6383-0}}</ref> So the geometric means are an increasing sequence {{math|''g''{{sub|0}} ≤ ''g''{{sub|1}} ≤ ''g''{{sub|2}} ≤ ...}}; the arithmetic means are a decreasing sequence {{math|''a''{{sub|0}} ≥ ''a''{{sub|1}} ≥ ''a''{{sub|2}} ≥ ...}}; and {{math|''g<sub>n</sub>'' ≤ ''M''(''x'', ''y'') ≤ ''a<sub>n</sub>''}} for any {{mvar|n}}. These are strict inequalities if {{math|''x'' ≠ ''y''}}. {{math|''M''(''x'', ''y'')}} is thus a number between {{math|''x''}} and {{math|''y''}}; it is also between the geometric and arithmetic mean of {{math|''x''}} and {{math|''y''}}. If {{math|''r'' ≥ 0}} then {{math|''M''(''rx'', ''ry'') {{=}} ''r M''(''x'', ''y'')}}. There is an integral-form expression for {{math|''M''(''x'', ''y'')}}:<ref>{{dlmf|first1=B. C.|last1=Carson|id=19.8.i|title=Elliptic Integrals|mode=cs1}}</ref><math display=block>\begin{align} M(x,y) &= \frac{\pi}{2} \left( \int_0^\frac{\pi}{2}\frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} \right)^{-1}\\ &=\pi\left(\int_0^\infty \frac{dt}{\sqrt{t(t+x^2)(t+y^2)}}\right)^{-1}\\ &= \frac{\pi}{4} \cdot \frac{x + y}{K\left( \frac{x - y}{x + y} \right)} \end{align}</math>where {{math|''K''(''k'')}} is the [[elliptic integral|complete elliptic integral of the first kind]]:<math display="block">K(k) = \int_0^\frac{\pi}{2}\frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}} </math>Since the arithmetic–geometric process converges so quickly, it provides an efficient way to compute elliptic integrals, which are used, for example, in [[elliptic filter]] design.<ref name="Dimopoulos2011">{{cite book |author-first=Hercules G. |author-last=Dimopoulos |title=Analog Electronic Filters: Theory, Design and Synthesis |url=https://books.google.com/books?id=6W1eX4QwtyYC&pg=PA147 |year=2011 |publisher=Springer |isbn=978-94-007-2189-0 |pages=147–155 }}</ref> The arithmetic–geometric mean is connected to the [[Theta function|Jacobi theta function]] <math>\theta_3</math> by<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} pages 35, 40</ref><math display="block">M(1,x)=\theta_3^{-2}\left(\exp \left(-\pi \frac{M(1,x)}{M\left(1,\sqrt{1-x^2}\right)}\right)\right)=\left(\sum_{n\in\mathbb{Z}}\exp \left(-n^2 \pi \frac{M(1,x)}{M\left(1,\sqrt{1-x^2}\right)}\right)\right)^{-2},</math>which upon setting <math>x=1/\sqrt{2}</math> gives<math display="block">M(1,1/\sqrt{2})=\left(\sum_{n\in\mathbb{Z}}e^{-n^2\pi}\right)^{-2}.</math> == Related concepts == The reciprocal of the arithmetic–geometric mean of 1 and the [[square root of 2]] is [[Gauss's constant]].<math display=block>\frac{1}{M(1, \sqrt{2})} = G = 0.8346268\dots</math>In 1799, Gauss proved<ref group="note">By 1799, Gauss had two proofs of the theorem, but neither of them was rigorous from the modern point of view.</ref> that<math display="block">M(1,\sqrt{2})=\frac{\pi}{\varpi}</math>where <math>\varpi</math> is the [[lemniscate constant]]. In 1941, <math>M(1,\sqrt{2})</math> (and hence <math>G</math>) was proved [[Transcendental number|transcendental]] by [[Theodor Schneider]].<ref group="note">In particular, he proved that the [[beta function]] <math>\Beta (a,b)</math> is transcendental for all <math>a,b\in\mathbb{Q}\setminus\mathbb{Z}</math> such that <math>a+b\notin \mathbb{Z}_0^-</math>. The fact that <math>M(1,\sqrt{2})</math> is transcendental follows from <math>M(1,\sqrt{2})=\tfrac{1}{2}\Beta \left(\tfrac{1}{2},\tfrac{3}{4}\right).</math></ref><ref>{{cite journal |first=Theodor |last=Schneider |url=https://www.deepdyve.com/lp/de-gruyter/zur-theorie-der-abelschen-funktionen-und-integrale-mn0U50bvkB |title=Zur Theorie der Abelschen Funktionen und Integrale |year=1941 |journal=Journal für die reine und angewandte Mathematik |volume=183 |number=19 |pages=110–128 |doi=10.1515/crll.1941.183.110 |s2cid=118624331 }}</ref><ref>{{Cite journal |title=The Lemniscate Constants |last=Todd |first=John |journal=[[Communications of the ACM]] |volume=18 |number=1 <!-- |month=January -->|year=1975 |pages=14–19 |doi=10.1145/360569.360580 |s2cid=85873 |doi-access=free }}</ref> The set <math>\{\pi,M(1,1/\sqrt{2})\}</math> is [[Algebraic independence|algebraically independent]] over <math>\mathbb{Q}</math>,<ref>G. V. Choodnovsky: ''Algebraic independence of constants connected with the functions of analysis'', Notices of the AMS 22, 1975, p. A-486</ref><ref>G. V. Chudnovsky: ''Contributions to The Theory of Transcendental Numbers'', American Mathematical Society, 1984, p. 6</ref> but the set <math>\{\pi,M(1,1/\sqrt{2}),M'(1,1/\sqrt{2})\}</math> (where the prime denotes the [[derivative]] with respect to the second variable) is not algebraically independent over <math>\mathbb{Q}</math>. In fact,<ref>{{Cite book |last1=Borwein |first1=Jonathan M. |last2=Borwein| first2=Peter B. |title=Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity |publisher=Wiley-Interscience |year=1987 |edition=First |isbn=0-471-83138-7}} p. 45</ref><math display="block">\pi=2\sqrt{2}\frac{M^3(1,1/\sqrt{2})}{M'(1,1/\sqrt{2})}.</math>The [[geometric–harmonic mean]] GH can be calculated using analogous sequences of geometric and [[harmonic mean|harmonic]] means, and in fact {{math|1= GH(''x'', ''y'') = 1/''M''(1/''x'', 1/''y'') = ''xy''/''M''(''x'', ''y'')}}.<ref>{{cite journal | last = Newman | first = D. J. | doi = 10.2307/2007804 | journal = Mathematics of Computation | pages = 207–210 | title = A simplified version of the fast algorithms of Brent and Salamin | volume = 44 | year = 1985| issue = 169 | jstor = 2007804 }}</ref> The arithmetic–harmonic mean [[Geometric mean#Iterative means|is equivalent to]] the [[geometric mean]]. The arithmetic–geometric mean can be used to compute – among others – [[Logarithm#Arithmetic–geometric mean approximation|logarithms]], [[Elliptic integral|complete and incomplete elliptic integrals of the first and second kind]],<ref>{{AS ref|17|598–599}}</ref> and [[Jacobi elliptic functions]].<ref>{{cite book |first=Louis V. |last=King |author-link=Louis Vessot King |url=https://archive.org/details/onthenumerical032686mbp |title=On the Direct Numerical Calculation of Elliptic Functions and Integrals |publisher=Cambridge University Press |year=1924 }}</ref> ==Proof of existence== The [[inequality of arithmetic and geometric means]] implies that<math display=block>g_n \leq a_n</math>and thus<math display=block>g_{n + 1} = \sqrt{g_n \cdot a_n} \geq \sqrt{g_n \cdot g_n} = g_n</math>that is, the sequence {{math|''g<sub>n</sub>''}} is nondecreasing and bounded above by the larger of {{math|''x''}} and {{math|''y''}}. By the [[monotone convergence theorem]], the sequence is convergent, so there exists a {{math|''g''}} such that:<math display=block>\lim_{n\to \infty}g_n = g</math>However, we can also see that:<math display=block>a_n = \frac{g_{n + 1}^2}{g_n}</math> and so: <math display=block>\lim_{n\to \infty}a_n = \lim_{n\to \infty}\frac{g_{n + 1}^2}{g_{n}} = \frac{g^2}{g} = g</math> [[Q.E.D.]] ==Proof of the integral-form expression== This proof is given by Gauss.<ref name="Cox" /> Let <math display=block>I(x,y) = \int_0^{\pi/2}\frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} ,</math> Changing the variable of integration to <math>\theta'</math>, where <math display="block"> \sin\theta = \frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'} \Rightarrow d(\sin\theta)=d\left(\frac{2x\sin\theta'}{(x+y)+(x-y)\sin^2\theta'}\right)\Rightarrow \cos\theta\ d\theta =2x \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta' </math> <math display="block">\cos\theta = \frac{\sqrt{(x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta'}}{(x+y)+(x-y)\sin^2\theta'}=\frac{\cos\theta'\sqrt{(x-y)^2\cos^2\theta'+4xy}}{(x+y)+(x-y)\sin^2\theta'}=\frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'} ,</math> <math display="block">\Rightarrow \cos\theta\ d\theta =\frac{\cos\theta'\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}}{(x+y)+(x-y)\sin^2\theta'}\ d\theta =2x \frac{(x+y)-(x-y)\sin^2\theta'}{((x+y)+(x-y)\sin^2\theta')^2}\ \cos\theta' d\theta' ,</math> <math display="block"> \Rightarrow d\theta = \frac{x((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')} \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}} \ ,</math> <math display="block"> \sqrt{x^2\cos^2\theta+y^2\sin^2\theta} = \frac{\sqrt{{x^2 ((x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta')+4x^2y^2\sin^2\theta'}}}{((x+y)+(x-y)\sin^2\theta')}= \frac{x ((x+y)-(x-y)\sin^2\theta')}{((x+y)+(x-y)\sin^2\theta')}</math> This yields <math display="block"> \frac{d\theta}{\sqrt{x^2\cos^2\theta+y^2\sin^2\theta}} = \frac{2 d\theta'}{\sqrt{(x+y)^2\cos^2\theta'+4xy\sin^2\theta'}} = \frac{d\theta'}{\sqrt{((\frac{x+y}{2})^2\cos^2\theta'+(\sqrt{xy})^2\sin^2\theta'}} ,</math> gives <math display="block">\begin{align} I(x,y) &= \int_0^{\pi/2}\frac{d\theta'}{\sqrt{((\frac{x+y}{2})^2\cos^2\theta'+(\sqrt{xy})^2\sin^2\theta'}}\\ &= I\bigl(\tfrac{x+y}{2},\sqrt{xy}\bigr) . \end{align}</math> Thus, we have <math display=block> \begin{align} I(x,y) &= I(a_1, g_1) = I(a_2, g_2) = \cdots\\ &= I\bigl(M(x,y),M(x,y)\bigr) = \pi/\bigr(2M(x,y)\bigl) . \end{align} </math> The last equality comes from observing that <math>I(z,z) = \pi/(2z)</math>. Finally, we obtain the desired result <math display=block>M(x,y) = \pi/\bigl(2 I(x,y) \bigr) .</math> ==Applications== ===The number ''π''=== According to the [[Gauss–Legendre algorithm]],<ref>{{cite journal |first=Eugene |last=Salamin |author-link=Eugene Salamin (mathematician) |title=Computation of π using arithmetic–geometric mean |journal=[[Mathematics of Computation]] |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_1 |volume=30 |issue=135 |year=1976 <!-- |month=July -->|pages=565–570 |doi=10.2307/2005327 |jstor=2005327 |mr=0404124 }}</ref> <math display=block>\pi = \frac{4\,M(1,1/\sqrt{2})^2} {1 - \displaystyle\sum_{j=1}^\infty 2^{j+1} c_j^2} ,</math> where <math display=block>c_j = \frac{1}{2}\left(a_{j-1}-g_{j-1}\right) ,</math> with <math>a_0=1</math> and <math>g_0=1/\sqrt{2}</math>, which can be computed without loss of precision using <math display=block>c_j = \frac{c_{j-1}^2}{4a_j} .</math> ===Complete elliptic integral ''K''(sin''α'')=== Taking <math>a_0 = 1</math> and <math>g_0 = \cos\alpha</math> yields the AGM <math display=block>M(1,\cos\alpha) = \frac{\pi}{2K(\sin \alpha)} ,</math> where {{math|''K''(''k'')}} is a complete [[elliptic integral|elliptic integral of the first kind]]: <math display=block>K(k) = \int_0^{\pi/2}(1 - k^2 \sin^2\theta)^{-1/2} \, d\theta.</math> That is to say that this [[quarter period]] may be efficiently computed through the AGM, <math display=block>K(k) = \frac{\pi}{2M(1,\sqrt{1-k^2})} .</math> ===Other applications=== Using this property of the AGM along with the ascending transformations of [[John Landen]],<ref>{{cite journal |first=John |last=Landen |title=An investigation of a general theorem for finding the length of any arc of any conic hyperbola, by means of two elliptic arcs, with some other new and useful theorems deduced therefrom |journal=[[Philosophical Transactions of the Royal Society]] |volume=65 |year=1775 |pages=283–289 |doi=10.1098/rstl.1775.0028|s2cid=186208828 }}</ref> [[Richard P. Brent]]<ref>{{cite journal |first=Richard P. |last=Brent |title=Fast Multiple-Precision Evaluation of Elementary Functions |journal=[[Journal of the ACM]] |volume=23 |issue=2 |year=1976 |pages=242–251 |doi=10.1145/321941.321944 |mr=0395314 |citeseerx=10.1.1.98.4721 |s2cid=6761843 |url=https://link.springer.com/chapter/10.1007/978-3-319-32377-0_2 }}</ref> suggested the first AGM algorithms for the fast evaluation of elementary [[transcendental function]]s ({{math|''e''<sup>''x''</sup>}}, {{math|cos ''x''}}, {{math|sin ''x''}}). Subsequently, many authors went on to study the use of the AGM algorithms.<ref>{{cite book |author1-link=Jonathan Borwein |first1=Jonathan M. |last1=Borwein |author2-link=Peter Borwein |first2=Peter B. |last2=Borwein |title=Pi and the AGM |publisher=Wiley |place=New York |year=1987 |isbn=0-471-83138-7 |mr=0877728 }}</ref> ==See also== * [[Landen's transformation]] * [[Gauss–Legendre algorithm]] * [[Generalized mean]] ==References== ===Notes=== {{reflist|group=note}} ===Citations=== {{reflist}} ===Sources=== {{refbegin}} * {{cite journal |author1-last=Daróczy |author1-first=Zoltán |author2-last=Páles |author2-first=Zsolt |year=2002 |title=Gauss-composition of means and the solution of the Matkowski–Suto problem |journal=[[Publicationes Mathematicae Debrecen]] |volume=61 |issue=1–2 |pages=157–218 |doi=10.5486/PMD.2002.2713 }} * {{SpringerEOM |title=Arithmetic–geometric mean process|mode=cs1}} * {{mathworld |urlname=Arithmetic-GeometricMean}} {{refend}} {{Statistics|descriptive}} {{DEFAULTSORT:Arithmetic-Geometric Mean}} [[Category:Means]] [[Category:Special functions]] [[Category:Elliptic functions]] [[Category:Articles containing proofs]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:AS ref
(
edit
)
Template:About
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Dlmf
(
edit
)
Template:Math
(
edit
)
Template:Mathworld
(
edit
)
Template:Mvar
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:SpringerEOM
(
edit
)
Template:Statistics
(
edit
)
Template:Underline
(
edit
)
Template:Val
(
edit
)
Template:X^2 ((x+y)^2-2(x^2+y^2)\sin^2\theta'+(x-y)^2\sin^4\theta')+4x^2y^2\sin^2\theta'
(
edit
)