Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Atomic electron transition
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Change of an electron between energy levels within an atom}} [[File:Bohr-atom-electron-to-jump.svg|thumb|228x228px|An electron in a [[Bohr model]] atom, moving from [[Quantum number|quantum level]] {{math|1=''n'' = 3}} to {{math|1=''n'' = 2}} and releasing a [[photon]]. The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the [[ground state]], has the lowest energy of all states in the system. ]] {{Use mdy dates|date=February 2016}} In [[atomic physics]] and [[chemistry]], an '''atomic electron transition''' (also called an atomic transition, quantum jump, or quantum leap) is an [[electron]] changing from one [[energy level]] to another within an [[atom]]<ref>Schombert, James. [http://abyss.uoregon.edu/~js/cosmo/lectures/lec08.html "Quantum physics"] University of Oregon Department of Physics</ref> or [[artificial atom]].<ref>{{Cite journal |arxiv = 1009.2969|bibcode = 2011PhRvL.106k0502V|title = Observation of Quantum Jumps in a Superconducting Artificial Atom|journal = Physical Review Letters|volume = 106|issue = 11|pages = 110502|last1 = Vijay|first1 = R|last2 = Slichter|first2 = D. H|last3 = Siddiqi|first3 = I|year = 2011|doi = 10.1103/PhysRevLett.106.110502|pmid = 21469850| s2cid=35070320 }}</ref> The time scale of a quantum jump has not been measured experimentally. However, the [[Franck–Condon principle]] binds the upper limit of this parameter to the order of [[Attosecond|attoseconds]].<ref>{{Cite journal |last1=de la Peña |first1=L. |last2=Cetto |first2=A. M. |last3=Valdés-Hernández |first3=A. |date=2020-12-04 |title=How fast is a quantum jump? |url=https://www.sciencedirect.com/science/article/pii/S0375960120307477 |journal=Physics Letters A |volume=384 |issue=34 |pages=126880 |doi=10.1016/j.physleta.2020.126880 |issn=0375-9601|arxiv=2009.02426 |bibcode=2020PhLA..38426880D }}</ref> Electrons can ''relax'' into states of lower energy by emitting [[electromagnetic radiation]] in the form of a photon. Electrons can also absorb passing photons, which ''excites'' the electron into a state of higher energy. The larger the energy separation between the electron's initial and final state, the shorter the photons' [[wavelength]].<ref name=":0"/> == History == Danish physicist [[Niels Bohr]] first theorized that electrons can perform quantum jumps in 1913.<ref>{{Cite news|last=Gleick|first=James|date=1986-10-21|title=PHYSICISTS FINALLY GET TO SEE QUANTUM JUMP WITH OWN EYES|language=en-US|work=The New York Times|url=https://www.nytimes.com/1986/10/21/science/physicists-finally-get-to-see-quantum-jump-with-own-eyes.html|access-date=2021-12-06|issn=0362-4331}}</ref> Soon after, [[James Franck]] and [[Gustav Ludwig Hertz]] [[Franck–Hertz experiment|proved experimentally]] that atoms have quantized energy states.<ref>{{Cite web|title=Franck-Hertz experiment {{!}} physics {{!}} Britannica|url=https://www.britannica.com/science/Franck-Hertz-experiment|access-date=2021-12-06|website=www.britannica.com|language=en}}</ref> The observability of quantum jumps was predicted by [[Hans Dehmelt]] in 1975, and they were first observed using [[Quadrupole ion trap|trapped ions]] of [[barium]] at [[University of Hamburg]] and [[Mercury (element)|mercury]] at [[NIST]] in 1986.<ref name=":0">{{cite journal|last1=Itano|first1=W. M.|last2=Bergquist|first2=J. C.|last3=Wineland|first3=D. J.|date=2015|title=Early observations of macroscopic quantum jumps in single atoms|url=http://tf.boulder.nist.gov/general/pdf/2723.pdf|journal=International Journal of Mass Spectrometry|volume=377|page=403|bibcode=2015IJMSp.377..403I|doi=10.1016/j.ijms.2014.07.005}}</ref> == Theory == An atom interacts with the oscillating electric field: {{NumBlk|:|<math> E(t) = |\textbf{E}_0| Re( e^{-i{\omega}t} \hat{\textbf{e}}_\mathrm{rad} )</math>|{{EquationRef|1}}}} with amplitude <math>|\textbf{E}_0|</math>, angular frequency <math>\omega</math>, and polarization vector <math>\hat{\textbf{e}}_\mathrm{rad}</math>.<ref>{{Cite book|title=Atomic Physics|author=Foot, CJ|year=2004| publisher=Oxford University Press|isbn=978-0-19-850696-6}}</ref> Note that the actual phase is <math> (\omega t - \textbf{k} \cdot \textbf{r}) </math>. However, in many cases, the variation of <math> \textbf{k} \cdot \textbf{r} </math> is small over the atom (or equivalently, the radiation wavelength is much greater than the size of an atom) and this term can be ignored. This is called the dipole approximation. The atom can also interact with the oscillating magnetic field produced by the radiation, although much more weakly. The Hamiltonian for this interaction, analogous to the energy of a classical dipole in an electric field, is <math> H_I = e \textbf{r} \cdot \textbf{E}(t) </math>. The stimulated transition rate can be calculated using [[time-dependent perturbation theory]]; however, the result can be summarized using [[Fermi's golden rule]]: <math display="block"> Rate \propto |eE_0|^2 \times | \lang 2 | \textbf{r} \cdot \hat{\textbf{e}}_\mathrm{rad} |1 \rang |^2 </math> The dipole matrix element can be decomposed into the product of the radial integral and the angular integral. The angular integral is zero unless the [[selection rules]] for the atomic transition are satisfied. == Recent discoveries == In 2019, it was demonstrated in an experiment with a superconducting [[artificial atom]] consisting of two strongly-hybridized [[Transmon|transmon qubits]] placed inside a readout resonator cavity at 15 m[[Kelvin|K]], that the evolution of some jumps is continuous, coherent, deterministic, and reversible.<ref>{{cite journal|last1=Minev|first1=Z. K.|last2=Mundhada|first2=S. O.|last3=Shankar|first3=S.|last4=Reinhold|first4=P.|last5=Gutiérrez-Jáuregui|first5=R.|last6=Schoelkopf|first6=R. J..|last7=Mirrahimi|first7=M.|last8=Carmichael|first8=H. J.|last9=Devoret|first9=M. H.|date=3 June 2019|title=To catch and reverse a quantum jump mid-flight|journal=Nature|volume=570|issue=7760|pages=200–204|arxiv=1803.00545|bibcode=2019Natur.570..200M|doi=10.1038/s41586-019-1287-z|pmid=31160725|s2cid=3739562 }}</ref> On the other hand, other quantum jumps are inherently unpredictable.<ref>{{Cite journal|last1=Snizhko|first1=Kyrylo|last2=Kumar|first2=Parveen|last3=Romito|first3=Alessandro|date=2020-09-29|title=Quantum Zeno effect appears in stages|url=https://link.aps.org/doi/10.1103/PhysRevResearch.2.033512|journal=Physical Review Research|volume=2|issue=3|pages=033512|arxiv=2003.10476|doi=10.1103/PhysRevResearch.2.033512|bibcode=2020PhRvR...2c3512S |s2cid=214623209 }}</ref> ==See also== {{div col|colwidth=20em}} * [[Burst noise]] * [[Ensemble interpretation]] * [[Fluorescence]] * [[Glowing pickle demonstration]] * [[Molecular electronic transition]], for molecules * [[Phosphorescence]] * [[Quantum jump]] * [[Spontaneous emission]] * [[Stimulated emission]] {{div col end}} ==References== {{Reflist}} == External links == {{Wiktionary|quantum leap}} * {{cite journal |url=http://www.psiquadrat.de/downloads/schroedinger52_jumps1.pdf |title=Are there quantum jumps? Part I |journal=The British Journal for the Philosophy of Science |volume=3 |issue=10 |date=August 1952 |pages=109–123 |first=Erwin |last=Schrödinger |author-link=Erwin Schrödinger |doi=10.1093/bjps/iii.10.109}} [http://www.psiquadrat.de/downloads/schroedinger52_jumps2.pdf Part 2] * [http://www.rzuser.uni-heidelberg.de/~as3/no-quantum-jumps.pdf "There are no quantum jumps, nor are there particles!"] by H. D. Zeh, ''Physics Letters'' '''A172''', 189 (1993). * {{cite web |last1=Ball |first1=Philip |title=Quantum Leaps, Long Assumed to Be Instantaneous, Take Time |url=https://www.quantamagazine.org/quantum-leaps-long-assumed-to-be-instantaneous-take-time-20190605 |website=Quanta Magazine |access-date=6 June 2019 |date=5 June 2019}} *[https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.L161404 "Surface plasmon at a metal-dielectric interface with an epsilon-near-zero transition layer"] by Kevin Roccapriore et al., ''Physical Review B'' '''103''', L161404 (2021). {{DEFAULTSORT:Atomic Electron Transition}} [[Category:Atomic physics]] [[Category:Electron states]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite news
(
edit
)
Template:Cite web
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:EquationRef
(
edit
)
Template:Math
(
edit
)
Template:NumBlk
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Use mdy dates
(
edit
)
Template:Wiktionary
(
edit
)