Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Atomic units
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|System of measurement}} {{distinguish|atomic mass units}} The '''atomic units''' are a [[systems of measurement|system]] of [[natural units]] of measurement that is especially convenient for calculations in [[atomic physics]] and related scientific fields, such as [[computational chemistry]] and [[atomic spectroscopy]]. They were originally suggested and named by the physicist [[Douglas Hartree]].<ref name="Hartree1928">{{citation | last1=Hartree | first1=D. R. | authorlink1=Douglas Hartree | title=The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods | year=1928 | journal=[[Mathematical Proceedings of the Cambridge Philosophical Society]] | publisher=Cambridge University Press | volume=24 | issue=1 | pages=89β110 | url=http://journals.cambridge.org/action/displayAbstract?aid=1733252 | doi=10.1017/S0305004100011919 |bibcode = 1928PCPS...24...89H |s2cid=122077124 }}</ref> Atomic units are often abbreviated "a.u." or "au", not to be confused with similar abbreviations used for [[astronomical unit]]s, [[arbitrary unit]]s, and [[absorbance|absorbance units]] in other contexts. == Motivation == In the context of atomic physics, using the atomic units system can be a convenient shortcut, eliminating symbols and numbers and reducing the order of magnitude of most numbers involved. For example, the [[Hamiltonian operator]] in the [[SchrΓΆdinger equation]] for the [[helium]] atom with standard quantities, such as when using SI units, is<ref name="McQuarrie2008">{{cite book |last1=McQuarrie |first1=Donald A. |title=Quantum Chemistry |date=2008 |publisher=University Science Books |location=New York, NY |edition=2nd }}</ref>{{rp|[https://books.google.com/books?hl=en&id=zzxLTIljQB4C&pg=PA437 437]}} : <math>\hat{H} = - \frac{\hbar^2}{2m_\text{e}} \nabla_1^2 - \frac{\hbar^2}{2m_\text{e}} \nabla_2^2 - \frac{2e^2}{4\pi\epsilon_0 r_1} - \frac{2e^2}{4\pi\epsilon_0 r_2} + \frac{e^2}{4\pi\epsilon_0 r_{12}} ,</math> but adopting the convention associated with atomic units that transforms quantities into [[Dimensionless quantity|dimensionless]] equivalents, it becomes : <math>\hat{H} = - \frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 - \frac{2}{r_1} - \frac{2}{r_2} + \frac{1}{r_{12}} .</math> In this convention, the constants {{tmath|1= \hbar }}, {{tmath|1= m_\text{e} }}, {{tmath|1= 4 \pi \epsilon_0 }}, and {{tmath|1= e }} all correspond to the value {{tmath|1= 1 }} (see ''{{slink|#Definition}}'' below). The distances relevant to the physics expressed in SI units are naturally on the order of {{tmath|1= 10^{-10}\,\mathrm{m} }}, while expressed in atomic units distances are on the order of {{tmath|1= 1 a_0 }} (one [[Bohr radius]], the atomic unit of length). An additional benefit of expressing quantities using atomic units is that their values calculated and reported in atomic units do not change when values of fundamental constants are revised, since the fundamental constants are built into the conversion factors between atomic units and SI. == History == Hartree defined units based on three physical constants:<ref name="Hartree1928"/>{{rp|91}} {{blockquote |text= Both in order to eliminate various universal constants from the equations and also to avoid high powers of 10 in numerical work, it is convenient to express quantities in terms of units, which may be called 'atomic units', defined as follows: : ''Unit of length'', {{tmath|1= a_\text{H} = h^2 \,/\, 4 \pi^2 m e^2 }}, on the orbital mechanics the radius of the 1-quantum circular orbit of the [[Hydrogen|H]]-atom with fixed nucleus. : ''Unit of charge'', {{tmath|1= e }}, the magnitude of the charge on the electron. : ''Unit of mass'', {{tmath|1= m }}, the mass of the electron. <!--Hartree did not use other units, for example, the Boltzmann constant, nor did he use . --> Consistent with these are: : ''Unit of action'', {{tmath|1= h \,/\, 2 \pi }}. : ''Unit of energy'', {{tmath|1= e^2 / a_\text{H} = 2 h c R = }} [...] : ''Unit of time'', {{tmath|1= 1 \,/\, 4 \pi c R }}.{{br}} |author=D.R. Hartree |title=''The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods'' }} Here, the modern equivalent of {{tmath|1= R }} is the [[Rydberg constant]] {{tmath|1= R_\infty }}, of {{tmath|1= m }} is the electron mass {{tmath|1= m_\text{e} }}, of {{tmath|1= a_\text{H} }} is the Bohr radius {{tmath|1= a_0 }}, and of {{tmath|1= h / 2 \pi }} is the reduced Planck constant {{tmath|1= \hbar }}. Hartree's expressions that contain {{tmath|1= e }} differ from the modern form due to a change in the definition of {{tmath|1= e }}, as explained below. In 1957, Bethe and Salpeter's book ''Quantum mechanics of one-and two-electron atoms''<ref>{{cite book |last1=Bethe |first1=Hans A. |url=http://link.springer.com/10.1007/978-3-662-12869-5_1 |title=Introduction. Units |last2=Salpeter |first2=Edwin E. |date=1957 |publisher=Springer Berlin Heidelberg |isbn=978-3-662-12871-8 |location=Berlin, Heidelberg |pages=2β4 |language=en |doi=10.1007/978-3-662-12869-5_1}}</ref> built on Hartree's units, which they called '''atomic units''' abbreviated "a.u.". They chose to use {{tmath|1= \hbar }}, their unit of [[Action (physics)|action]] and [[angular momentum]] in place of Hartree's length as the base units. They noted that the unit of length in this system is the radius of the first [[Bohr model of the atom|Bohr orbit]] and their velocity is the electron velocity in Bohr's model of the first orbit. In 1959, Shull and Hall<ref name="ShullHall1959"> {{cite journal |last1=Shull |first1=H. |last2=Hall |first2=G. G. |year=1959 |title=Atomic Units |journal=[[Nature (journal)|Nature]] |volume=184 |issue=4698 |page=1559 |doi=10.1038/1841559a0 |bibcode = 1959Natur.184.1559S | s2cid=23692353 }}</ref> advocated '''atomic units''' based on Hartree's model but again chose to use {{tmath|1= \hbar }} as the defining unit. They explicitly named the distance unit a "[[Bohr radius]]"; in addition, they wrote the unit of energy as {{tmath|1= H = m e^4 / \hbar^2 }} and called it a '''Hartree'''. These terms came to be used widely in quantum chemistry.<ref>{{Cite book |last=Levine |first=Ira N. |title=Quantum chemistry |date=1991 |publisher=Prentice-Hall International |isbn=978-0-205-12770-2 |edition=4 |series=Pearson advanced chemistry series |location=Englewood Cliffs, NJ }}</ref>{{rp|349}} In 1973 McWeeny extended the system of Shull and Hall by adding [[permittivity]] in the form of {{tmath|1= \kappa_0 = 4 \pi \epsilon_0 }} as a defining or base unit.<ref name="McWeeny1973">{{cite journal |last=McWeeny |first=R. |date=May 1973 |title=Natural Units in Atomic and Molecular Physics |url=https://www.nature.com/articles/243196a0 |journal=Nature |language=en |volume=243 |issue=5404 |pages=196β198 |doi=10.1038/243196a0 |bibcode=1973Natur.243..196M |s2cid=4164851 |issn=0028-0836}}</ref><ref name="JerrardMcNeill1992">{{cite book |last1=Jerrard |first1=H. G. |last2=McNeill |first2=D. B. |date=1992 |url=http://link.springer.com/10.1007/978-94-011-2294-8_2 |title=Systems of units |publisher=Springer Netherlands |isbn=978-0-412-46720-2 |location=Dordrecht |pages=3β8 |language=en |doi=10.1007/978-94-011-2294-8_2 }}</ref> Simultaneously he adopted the SI definition of {{tmath|1= e }} so that his expression for energy in atomic units is {{tmath|1= e^2 / (4 \pi \epsilon_0 a_0) }}, matching the expression in the 8th SI brochure.<ref>{{SIbrochure8th|page=125}}. Note that this information is omitted in the 9th edition.</ref> == Definition == A set of base units in the atomic system as in one proposal are the electron rest mass, the magnitude of the electronic charge, the Planck constant, and the permittivity.<ref name="McWeeny1973"/>{{refn|{{citation |author1=Paul Quincey |author2=Peter J Mohr |author3=William D Phillips |title=Angles are inherently neither length ratios nor dimensionless |journal=Metrologia |volume=56 |date=2019 |issue=4 |page=043001 |doi=10.1088/1681-7575/ab27d7 |arxiv=1909.08389 |bibcode=2019Metro..56d3001Q |quote=In [the Hartree system of atomic] units, {{math|''m''<sub>e</sub>}}, {{math|''e''}}, {{math|''Δ§''}} and {{math|1/4''ΟΞ΅''<sub>0</sub>}} are all set equal to unity. }} β a reference giving an equivalent set of defining constants.}} In the atomic units system, each of these takes the value 1; the corresponding values in the [[International System of Units]]<ref name="Brochure9_2019"> {{cite web |title = 9th edition of the SI Brochure |publisher = BIPM |date = 2019 |url = https://www.bipm.org/en/publications/si-brochure/ |access-date = 2019-05-20 }}</ref>{{rp|132}} are given in the table. {|class="wikitable" |+ Base atomic units{{cref|*}} |- !scope="col"| Symbol and Name !scope="col"| Quantity (dimensions){{cref|{{dagger}}}} !scope="col"| Atomic<br>units{{cref|{{double dagger}}}} !scope="col"| SI units |- | {{tmath|1= \hbar }}, [[reduced Planck constant]] || action (ML<sup>2</sup>T<sup>β1</sup>) || 1 || {{physconst|hbar|ref=no}} <ref> {{cite web |title=reduced Planck constant | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?hbar }}</ref> |- | {{tmath|1= e }}, [[elementary charge]] || charge (Q) || 1 || {{physconst|e|ref=no}} <ref> {{cite web |title=elementary charge | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?e }}</ref> |- | {{tmath|1= m_\text{e} }}, [[electron rest mass]] || mass (M) || 1 || {{physconst|me|ref=no}} <ref> {{cite web |title=electron mass | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?me }}</ref> |- | {{tmath|1= 4 \pi \epsilon_0 }}, [[permittivity]] || permittivity (Q<sup>2</sup>W<sup>β1</sup>L<sup>β1</sup>) || 1 || {{physconst|auperm|ref=no}} <ref name="auperm"> {{cite web |title=atomic unit of permittivity |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auperm }}</ref> |} ===Table notes=== *{{cnote|*|This arbitrary choice of base units was proposed by McWeeny.}} *{{cnote|{{dagger}}|See [[Dimensional analysis]]. W represents the dimension of energy, ML<sup>2</sup>T<sup>β2</sup>.<ref name="McWeeny1973"/>}} *{{cnote|{{double dagger}}|In the 'atomic units' column, the convention that uses dimensionless equivalents has been applied.}} == Units == Three of the defining constants (reduced Planck constant, elementary charge, and electron rest mass) are atomic units themselves β of [[action (physics)|action]],<ref>{{cite web |title=atomic unit of action |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ahbar }}</ref> [[electric charge]],<ref>{{cite web |title=atomic unit of charge |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ae }}</ref> and [[mass]],<ref>{{cite web |title=atomic unit of mass |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ame |work={{harvnb|CODATA}} }}</ref> respectively. Two named units are those of [[length]] ([[Bohr radius]] {{tmath|1= a_0 \equiv 4 \pi \epsilon_0 \hbar^2 / m_\text{e} e^2 }}) and [[energy]] ([[hartree]] {{tmath|1= E_\text{h} \equiv \hbar^2 / m_\text{e} a_0^2 }}). {|class="wikitable" |+ Defined atomic units |- !scope="col"| Atomic unit of !scope="col"| Expression !scope="col"| Value in SI units !scope="col"| Other equivalents |- | [[charge density|electric charge density]] || <math> e/a_0^3 </math> | {{physconst|auecd|ref=no}} <ref> {{cite web |title=atomic unit of charge density |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aucd }}</ref> | |- | [[electric current]] || <math> e E_\text{h} / \hbar </math> | {{physconst|aucur|ref=no}} <ref> {{cite web |title=atomic unit of current |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aucur }}</ref> | |- | [[electric charge]] || <math>e</math> | {{physconst|auec|ref=no}} <ref> {{cite web |title=atomic unit of charge | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ae }}</ref> | |- | [[electric dipole moment]] || <math> e a_0 </math> | {{physconst|auedm|ref=no}} <ref> {{cite web |title=atomic unit of electric dipole moment |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auedm }}</ref> | {{math|β}} {{val|2.541746473|u=[[debye|D]]}} |- | [[electric quadrupole]] moment || <math> e a_0^2 </math> | {{physconst|aueqm|ref=no}} <ref> {{cite web |title=atomic unit of electric quadrupole moment |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aueqm }}</ref> | |- | [[electric potential]] || <math> E_\text{h} / e </math> | {{physconst|auepot|ref=no}} <ref> {{cite web |title=atomic unit of electric potential |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auep }}</ref> | |- | [[electric field]] || <math>E_\text{h} / e a_0 </math> | {{physconst|auef|ref=no}} <ref> {{cite web |title=atomic unit of electric field |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auefld }}</ref> | |- | [[electric field gradient]] || <math>E_\text{h} / e a_0^2 </math> | {{physconst|auefg|ref=no}} <ref> {{cite web |title=atomic unit of electric field gradient |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auefg }}</ref> | |- | [[permittivity]] || <math> e^2 / a_0 E_\text{h} </math> | {{physconst|auperm|ref=no}} <ref name="auperm"> {{cite web |title=atomic unit of permittivity |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auperm }}</ref> | {{tmath|1= 4 \pi \epsilon_0 }} |- | [[electric polarizability]] || <math> e^2 a_0^2 / E_\text{h} </math> | {{physconst|auepol|ref=no}} <ref> {{cite web |title=atomic unit of electric polarizability |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auepol }}</ref> | |- | 1st [[hyperpolarizability]] || <math>e^3 a_0^3 / E_\text{h}^2</math> | {{physconst|au1hypol|ref=no}} <ref> {{cite web |title=atomic unit of 1st hyperpolarizability | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auhypol }}</ref> | |- | 2nd hyperpolarizability || <math>e^4 a_0^4 / E_\text{h}^3</math> |{{physconst|au2hypol|ref=no}} <ref> {{cite web |title=atomic unit of 2nd hyperpolarizability | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?au2hypol }}</ref> | |- | [[magnetic dipole moment]] || <math> \hbar e / m_\text{e} </math> | {{physconst|aumdm|ref=no}} <ref> {{cite web |title=atomic unit of magnetic dipole moment |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aumdm }}</ref> | {{tmath|1= 2 \mu_\text{B} }} |- | [[magnetic flux density]] || <math> \hbar/e a_0^2 </math> | {{physconst|aumfd|ref=no}} <ref> {{cite web |title=atomic unit of magnetic flux density |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aumfd }}</ref> | {{math|β}} {{val|2.3505|e=9|ul=G}} |- | [[magnetizability]] || <math> e^2 a_0^2 / m_\text{e}</math> | {{physconst|aumag|ref=no}} <ref> {{cite web |title=atomic unit of magnetizability |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aumag }}</ref> | |- | [[action (physics)|action]] || <math>\hbar</math> | {{physconst|auact|ref=no}} <ref> {{cite web |title=atomic unit of action | work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ahbar }}</ref> | |- | [[energy]] || <math> E_\text{h} </math> | {{physconst|auener|ref=no}} <ref> {{cite web |title=atomic unit of energy |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Ahr }}</ref> | {{tmath|1= 2 h c R_\infty }}, {{tmath|1= \alpha^2 m_\text{e} c^2 }}, {{val|27.211386245988|(53)|ul=eV}} <ref> {{cite web |title=Hartree energy in eV |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?hrev }}</ref> |- | [[force]] || <math>E_\text{h} / a_0 </math> | {{physconst|auforce|ref=no}} <ref> {{cite web |title=atomic unit of force |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auforce }}</ref> | {{val|82.387|u=nN}}, {{val|51.421|u=eVΒ·Γ <sup>β1</sup>}} |- | [[length]] || <math> a_0 </math> | {{physconst|aulen|ref=no}} <ref> {{cite web |title=atomic unit of length |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?Abohrrada0 }}</ref> | {{tmath|1= \hbar / \alpha m_\text{e} c }}, {{val|0.529177|ul=Γ }} |- | [[mass]] || <math>m_\text{e}</math> | {{physconst|aumass|ref=no}} <ref> {{cite web |title=atomic unit of mass |work={{harvnb|CODATA}} | url=http://physics.nist.gov/cgi-bin/cuu/Value?Ame }}</ref> | |- | [[momentum]] || <math> \hbar/a_0 </math> | {{physconst|aumom|ref=no}} <ref> {{cite web |title=atomic unit of momentum |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aumom }}</ref> | |- | [[time]] || <math>\hbar / E_\text{h}</math> | {{physconst|autime|ref=no}} <ref> {{cite web |title=atomic unit of time |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?aut }}</ref> | |- | [[velocity]] || <math> a_0 E_\text{h} / \hbar </math> | {{physconst|auvel|ref=no}} <ref> {{cite web |title=atomic unit of velocity |work={{harvnb|CODATA}} |url=http://physics.nist.gov/cgi-bin/cuu/Value?auvel }}</ref> | {{tmath|1= \alpha c }} |- | colspan=4 | {{tmath|1= c }}: [[speed of light]], {{tmath|1= \epsilon_0 }}: [[vacuum permittivity]], {{tmath|1= R_\infty }}: [[Rydberg constant]], {{tmath|1= h }}: [[Planck constant]], {{tmath|1= \alpha }}: [[fine-structure constant]], {{tmath|1= \mu_\text{B} }}: [[Bohr magneton]], {{math|β}}: ''correspondence'' |- |} == Conventions == Different conventions are adopted in the use of atomic units, which vary in presentation, formality and convenience. === Explicit units === * Many texts (e.g. Jerrard & McNiell,<ref name="JerrardMcNeill1992"/> Shull & Hall<ref name="ShullHall1959"/>) define the atomic units as quantities, without a transformation of the equations in use. As such, they do not suggest treating either quantities as dimensionless or changing the form of any equations. This is consistent with expressing quantities in terms of dimensional quantities, where the atomic unit is included explicitly as a symbol (e.g. {{tmath|1= m = 3.4~m_\text{e} }}, {{tmath|1= m = 3.4~\text{a.u. of mass} }}, or more ambiguously, {{tmath|1= m = 3.4~\text{a.u.} }}), and keeping equations unaltered with explicit constants.<ref name="Pilar2001">{{cite book |last=Pilar |first=Frank L. |title=Elementary Quantum Chemistry |year=2001 |publisher=Dover Publications |isbn=978-0-486-41464-5 |page=155 |url=https://books.google.com/books?id=XpGM7r69LdkC&pg=PA155 }}</ref> * Provision for choosing more convenient closely related quantities that are more suited to the problem as units than universal fixed units are is also suggested, for example based on the [[reduced mass]] of an electron, albeit with careful definition thereof where used (for example, a unit {{tmath|1= H_M = \mu e^4 / \hbar^2}}, where {{tmath|1= \mu = m_\text{e} M / (m_\text{e} + M) }} for a specified mass {{tmath|1= M }}).<ref name="ShullHall1959"/> === A convention that eliminates units === In atomic physics, it is common to simplify mathematical expressions by a transformation of all quantities: * Hartree suggested that expression in terms of atomic units allows us "to eliminate various universal constants from the equations", which amounts to informally suggesting a transformation of quantities and equations such that all quantities are replaced by corresponding dimensionless quantities.<ref name="Hartree1928"/>{{rp|91}} He does not elaborate beyond examples. * McWeeny suggests that "... their adoption permits all the fundamental equations to be written in a dimensionless form in which constants such as {{tmath|1= e }}, {{tmath|1= m }} and {{tmath|1= h }} are absent and need not be considered at all during mathematical derivations or the processes of numerical solution; the units in which any calculated quantity must appear are implicit in its physical dimensions and may be supplied at the end." He also states that "An alternative convention is to interpret the symbols as the numerical measures of the quantities they represent, referred to some specified system of units: in this case the equations contain only pure numbers or dimensionless variables; ... the appropriate units are supplied at the end of a calculation, by reference to the physical dimensions of the quantity calculated. [This] convention has much to recommend it and is tacitly accepted in atomic and molecular physics whenever atomic units are introduced, for example for convenience in computation." * An informal approach is often taken, in which "equations are expressed in terms of atomic units simply by setting {{tmath|1= \hbar = m_\text{e} = e = 4 \pi \epsilon_0 = 1}}".<ref name="Pilar2001"/><ref>{{cite book |last=Bishop |first=David M. |title=Group Theory and Chemistry |year=1993 |publisher=Dover Publications |isbn=978-0-486-67355-4 |page=217 |url=https://books.google.com/books?id=l4zv4dukBT0C&pg=PA217}}</ref><ref>{{cite book |last=Drake |first=Gordon W. F. |title=Springer Handbook of Atomic, Molecular, and Optical Physics |year=2006 |edition=2nd |publisher=Springer |isbn=978-0-387-20802-2 |page=5 |url=https://books.google.com/books?id=Jj-ad_2aNOAC&pg=PA5 }}</ref> This is a form of shorthand for the more formal process of transformation between quantities that is suggested by others, such as McWeeny. == Physical constants == [[Dimensionless physical constant]]s retain their values in any system of units. Of note is the [[fine-structure constant]] {{tmath|1= \alpha = {e^2} / {(4 \pi \epsilon_0\,\hbar c)} \approx 1/137 }}, which appears in expressions as a consequence of the choice of units. For example, the numeric value of the [[speed of light]], expressed in atomic units, is {{tmath|1= c = 1/\alpha\,\text{a.u.} \approx 137\,\text{a.u.} }}<ref name="KarplusPorter1970">{{citation |last1=Karplus |first1=Martin |last2=Porter |first2=Richard Needham |year=1970 |title=Atoms and Molecules: An Introduction for Students of Physical Chemistry |location=Netherlands |publisher=W. A. Benjamin }}</ref>{{rp|597}} {|class="wikitable" |+ Some physical constants expressed in atomic units |- !scope="col"| Name !scope="col"| Symbol/Definition !scope="col"| Value in atomic units |- | [[speed of light]] || <math>c</math> || <math>(1/\alpha) \,a_0 E_\text{h}/\hbar \approx 137 \,a_0 E_\text{h}/\hbar</math> |- | [[classical electron radius]] || <math>r_\text{e}=\frac{1}{4\pi\epsilon_0}\frac{e^2}{m_\text{e} c^2}</math> || <math>\alpha^2 \,a_0 \approx 0.0000532 \,a_0</math> |- | [[reduced Compton wavelength]]<br/> of the electron || {{math|''Ζ''{{sub|e}}}} <math>= \frac{\hbar}{m_\text{e} c}</math> || <math>\alpha \,a_0 \approx 0.007297 \,a_0</math> |- | [[proton mass]] || <math>m_\text{p}</math> || <math>\approx 1836 \,m_\text{e}</math> |- |} == Bohr model in atomic units == Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classical [[Bohr model]] of the [[hydrogen atom]] for the bound electron in its [[ground state]]: * Mass = 1 a.u. of mass * Charge = β1 a.u. of charge * Orbital radius = 1 a.u. of length * Orbital velocity = 1 a.u. of velocity<ref name="KarplusPorter1970"/>{{rp|597}} * Orbital period = 2''Ο'' a.u. of time * Orbital [[angular velocity]] = 1 radian per a.u. of time * Orbital [[momentum]] = 1 a.u. of momentum * [[Ionization energy]] = {{sfrac|1|2}} a.u. of energy * Electric field (due to nucleus) = 1 a.u. of electric field * [[Lorentz force]] (due to nucleus) = 1 a.u. of force == References == <!--The following <span> is to suppress minor oddity from {{refn|follow=x}} without {{refn|name=x}}--><span dummy="<ref name="CODATAx"></ref>"></span>{{refn|follow="CODATAx"|{{cite web |title=CODATA Internationally recommended 2022 values of the Fundamental Physical Constants |work=NIST Reference on Constants, Units, and Uncertainty |url=http://physics.nist.gov/cuu/Constants/index.html |publisher=[[National Institute of Standards and Technology|NIST]] |ref={{harvid|CODATA}} }}}} {{reflist|2}} {{SI units}} {{Systems of measurement}} [[Category:Systems of units]] [[Category:Natural units]] [[Category:Atomic physics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Blockquote
(
edit
)
Template:Br
(
edit
)
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cnote
(
edit
)
Template:Comma separated entries
(
edit
)
Template:Cref
(
edit
)
Template:Distinguish
(
edit
)
Template:Main other
(
edit
)
Template:Math
(
edit
)
Template:Physconst
(
edit
)
Template:Reflist
(
edit
)
Template:Refn
(
edit
)
Template:Rp
(
edit
)
Template:SI units
(
edit
)
Template:SIbrochure8th
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Systems of measurement
(
edit
)
Template:Tmath
(
edit
)
Template:Val
(
edit
)