Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Autocovariance
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Concept in probability and statistics}} {{Correlation and covariance}} In [[probability theory]] and [[statistics]], given a [[stochastic process]], the '''autocovariance''' is a function that gives the [[covariance]] of the process with itself at pairs of time points. Autocovariance is closely related to the [[autocorrelation]] of the process in question. == Auto-covariance of stochastic processes == === Definition === With the usual notation <math>\operatorname{E}</math> for the [[Expected value|expectation]] operator, if the stochastic process <math>\left\{X_t\right\}</math> has the [[mean]] function <math>\mu_t = \operatorname{E}[X_t]</math>, then the autocovariance is given by<ref name=HweiHsu>{{cite book |first=Hwei |last=Hsu |year=1997 |title=Probability, random variables, and random processes |publisher=McGraw-Hill |isbn=978-0-07-030644-8 |url-access=registration |url=https://archive.org/details/schaumsoutlineof00hsuh }}</ref>{{rp|p. 162}} {{Equation box 1 |indent = : |title= |equation = {{NumBlk||<math>\operatorname{K}_{XX}(t_1,t_2) = \operatorname{cov}\left[X_{t_1}, X_{t_2}\right] = \operatorname{E}[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})] = \operatorname{E}[X_{t_1} X_{t_2}] - \mu_{t_1} \mu_{t_2}</math>|{{EquationRef|Eq.1}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} where <math>t_1</math> and <math>t_2</math> are two instances in time. === Definition for weakly stationary process === If <math>\left\{X_t\right\}</math> is a [[Weak-sense stationarity|weakly stationary (WSS) process]], then the following are true:<ref name=HweiHsu/>{{rp|p. 163}} :<math>\mu_{t_1} = \mu_{t_2} \triangleq \mu</math> for all <math>t_1,t_2</math> and :<math>\operatorname{E}[|X_t|^2] < \infty</math> for all <math>t</math> and :<math>\operatorname{K}_{XX}(t_1,t_2) = \operatorname{K}_{XX}(t_2 - t_1,0) \triangleq \operatorname{K}_{XX}(t_2 - t_1) = \operatorname{K}_{XX}(\tau),</math> where <math>\tau = t_2 - t_1</math> is the lag time, or the amount of time by which the signal has been shifted. The autocovariance function of a WSS process is therefore given by:<ref name=Lapidoth>{{cite book |first=Amos |last=Lapidoth |year=2009 |title=A Foundation in Digital Communication |publisher=Cambridge University Press |isbn=978-0-521-19395-5}}</ref>{{rp|p. 517}} {{Equation box 1 |indent = : |title= |equation = {{NumBlk||<math>\operatorname{K}_{XX}(\tau) = \operatorname{E}[(X_t - \mu_t)(X_{t- \tau} - \mu_{t- \tau})] = \operatorname{E}[X_t X_{t-\tau}] - \mu_t \mu_{t-\tau}</math>|{{EquationRef|Eq.2}}}} |cellpadding= 6 |border |border colour = #0073CF |background colour=#F5FFFA}} which is equivalent to :<math>\operatorname{K}_{XX}(\tau) = \operatorname{E}[(X_{t+ \tau} - \mu_{t +\tau})(X_{t} - \mu_{t})] = \operatorname{E}[X_{t+\tau} X_t] - \mu^2 </math>. === Normalization === It is common practice in some disciplines (e.g. statistics and [[time series analysis]]) to normalize the autocovariance function to get a time-dependent [[Pearson correlation coefficient]]. However in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably. The definition of the normalized auto-correlation of a stochastic process is :<math>\rho_{XX}(t_1,t_2) = \frac{\operatorname{K}_{XX}(t_1,t_2)}{\sigma_{t_1}\sigma_{t_2}} = \frac{\operatorname{E}[(X_{t_1} - \mu_{t_1})(X_{t_2} - \mu_{t_2})]}{\sigma_{t_1}\sigma_{t_2}}</math>. If the function <math>\rho_{XX}</math> is well-defined, its value must lie in the range <math>[-1,1]</math>, with 1 indicating perfect correlation and β1 indicating perfect [[anti-correlation]]. For a WSS process, the definition is :<math>\rho_{XX}(\tau) = \frac{\operatorname{K}_{XX}(\tau)}{\sigma^2} = \frac{\operatorname{E}[(X_t - \mu)(X_{t+\tau} - \mu)]}{\sigma^2}</math>. where :<math>\operatorname{K}_{XX}(0) = \sigma^2</math>. ===Properties=== ====Symmetry property==== :<math>\operatorname{K}_{XX}(t_1,t_2) = \overline{\operatorname{K}_{XX}(t_2,t_1)}</math><ref name=KunIlPark>Kun Il Park, Fundamentals of Probability and Stochastic Processes with Applications to Communications, Springer, 2018, 978-3-319-68074-3</ref>{{rp|p.169}} respectively for a WSS process: :<math>\operatorname{K}_{XX}(\tau) = \overline{\operatorname{K}_{XX}(-\tau)}</math><ref name=KunIlPark/>{{rp|p.173}} ====Linear filtering==== The autocovariance of a linearly filtered process <math>\left\{Y_t\right\}</math> :<math>Y_t = \sum_{k=-\infty}^\infty a_k X_{t+k}\,</math> is :<math>K_{YY}(\tau) = \sum_{k,l=-\infty}^\infty a_k a_l K_{XX}(\tau+k-l).\,</math> == Calculating turbulent diffusivity== Autocovariance can be used to calculate [[turbulent diffusivity]].<ref>{{Cite journal|last=Taylor|first=G. I.|date=1922-01-01|title=Diffusion by Continuous Movements|journal=Proceedings of the London Mathematical Society|language=en|volume=s2-20|issue=1|pages=196β212|doi=10.1112/plms/s2-20.1.196|bibcode=1922PLMS..220S.196T |issn=1460-244X|url=https://zenodo.org/record/1433523}}</ref> Turbulence in a flow can cause the fluctuation of velocity in space and time. Thus, we are able to identify turbulence through the statistics of those fluctuations{{Citation needed|date=September 2020}}. [[Reynolds decomposition]] is used to define the velocity fluctuations <math>u'(x,t)</math> (assume we are now working with 1D problem and <math>U(x,t)</math> is the velocity along <math>x</math> direction): :<math>U(x,t) = \langle U(x,t) \rangle + u'(x,t),</math> where <math>U(x,t)</math> is the true velocity, and <math>\langle U(x,t) \rangle</math> is the [[Reynolds decomposition|expected value of velocity]]. If we choose a correct <math>\langle U(x,t) \rangle</math>, all of the stochastic components of the turbulent velocity will be included in <math>u'(x,t)</math>. To determine <math>\langle U(x,t) \rangle</math>, a set of velocity measurements that are assembled from points in space, moments in time or repeated experiments is required. If we assume the turbulent flux <math>\langle u'c' \rangle</math> (<math>c' = c - \langle c \rangle</math>, and ''c'' is the concentration term) can be caused by a random walk, we can use [[Fick's laws of diffusion]] to express the turbulent flux term: :<math>J_{\text{turbulence}_x} = \langle u'c' \rangle \approx D_{T_x} \frac{\partial \langle c \rangle}{\partial x}.</math> The velocity autocovariance is defined as :<math>K_{XX} \equiv \langle u'(t_0) u'(t_0 + \tau)\rangle</math> or <math>K_{XX} \equiv \langle u'(x_0) u'(x_0 + r)\rangle,</math> where <math>\tau</math> is the lag time, and <math>r</math> is the lag distance. The turbulent diffusivity <math>D_{T_x}</math> can be calculated using the following 3 methods: {{numbered list |If we have velocity data along a ''[[Turbulent diffusion|Lagrangian trajectory]]'': :<math>D_{T_x} = \int_\tau^\infty u'(t_0) u'(t_0 + \tau) \,d\tau.</math> |If we have velocity data at one fixed ([[Turbulent diffusion|Eulerian]]) location{{Citation needed|date=September 2020}}: :<math>D_{T_x} \approx [0.3 \pm 0.1] \left[\frac{\langle u'u' \rangle + \langle u \rangle^2}{\langle u'u' \rangle}\right] \int_\tau^\infty u'(t_0) u'(t_0 + \tau) \,d\tau.</math> |If we have velocity information at two fixed (Eulerian) locations{{Citation needed|date=September 2020}}: :<math>D_{T_x} \approx [0.4 \pm 0.1] \left[\frac{1}{\langle u'u' \rangle}\right] \int_r^\infty u'(x_0) u'(x_0 + r) \,dr,</math> where <math>r</math> is the distance separated by these two fixed locations. }} == Auto-covariance of random vectors == {{main|Auto-covariance matrix}} == See also == * [[Autoregressive process]] * [[Correlation]] * [[Cross-covariance]] * [[Cross-correlation]] * [[Kalman filter#Estimation of the noise covariances Qk and Rk|Noise covariance estimation]] (as an application example) == References == {{Reflist}} == Further reading == * {{cite book |first=P. G. |last=Hoel |title=Mathematical Statistics |publisher=Wiley |location=New York |year=1984 |edition=Fifth |isbn=978-0-471-89045-4 }} * [https://web.archive.org/web/20060428122150/http://w3eos.whoi.edu/12.747/notes/lect06/l06s02.html Lecture notes on autocovariance from WHOI] [[Category:Fourier analysis]] [[Category:Autocorrelation]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation needed
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Correlation and covariance
(
edit
)
Template:Equation box 1
(
edit
)
Template:Main
(
edit
)
Template:Numbered list
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)