Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Automorphic number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Number whose square ends in the same digits}} {{no footnotes|date=March 2013}} In [[mathematics]], an '''automorphic number''' (sometimes referred to as a '''circular number''') is a [[natural number]] in a given [[number base]] <math>b</math> whose [[square (algebra)|square]] "ends" in the same digits as the number itself. ==Definition and properties== Given a number base <math>b</math>, a natural number <math>n</math> with <math>k</math> digits is an '''automorphic number''' if <math>n</math> is a [[fixed point (mathematics)|fixed point]] of the [[polynomial function]] <math>f(x) = x^2</math> over <math>\mathbb{Z}/b^k\mathbb{Z}</math>, the [[ring (mathematics)|ring]] of [[Modular arithmetic#Integers modulo m|integers modulo]] <math>b^k</math>. As the [[inverse limit]] of <math>\mathbb{Z}/b^k\mathbb{Z}</math> is <math>\mathbb{Z}_b</math>, the ring of [[P-adic number|<math>b</math>-adic]] integers, automorphic numbers are used to find the numerical representations of the fixed points of <math>f(x) = x^2</math> over <math>\mathbb{Z}_b</math>. For example, with <math>b = 10</math>, there are four 10-adic fixed points of <math>f(x) = x^2</math>, the last 10 digits of which are: : <math>\ldots 0000000000</math> : <math>\ldots 0000000001</math> : <math>\ldots 8212890625</math> {{OEIS|id=A018247}} : <math>\ldots 1787109376</math> {{OEIS|id=A018248}} Thus, the automorphic numbers in [[base 10]] are 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, ... {{OEIS|A003226}}. A fixed point of <math>f(x)</math> is a [[zero of a function|zero]] of the function <math>g(x) = f(x) - x</math>. In the ring of integers modulo <math>b</math>, there are <math>2^{\omega(b)}</math> zeroes to <math>g(x) = x^2 - x</math>, where the [[prime omega function]] <math>\omega(b)</math> is the number of distinct [[prime factor]]s in <math>b</math>. An element <math>x</math> in <math>\mathbb{Z}/b\mathbb{Z}</math> is a zero of <math>g(x) = x^2 - x</math> [[if and only if]] <math>x \equiv 0 \bmod p^{v_p(b)}</math> or <math>x \equiv 1 \bmod p^{v_p(b)}</math> for all <math>p|b</math>. Since there are two possible values in <math>\lbrace 0, 1 \rbrace</math>, and there are <math>\omega(b)</math> such <math>p|b</math>, there are <math>2^{\omega(b)}</math> zeroes of <math>g(x) = x^2 - x</math>, and thus there are <math>2^{\omega(b)}</math> fixed points of <math>f(x) = x^2</math>. According to [[Hensel's lemma]], if there are <math>k</math> zeroes or fixed points of a polynomial function modulo <math>b</math>, then there are <math>k</math> corresponding zeroes or fixed points of the same function modulo any power of <math>b</math>, and this remains true in the [[inverse limit]]. Thus, in any given base <math>b</math> there are <math>2^{\omega(b)}</math> <math>b</math>-adic fixed points of <math>f(x) = x^2</math>. As 0 is always a [[zero-divisor]], 0 and 1 are always fixed points of <math>f(x) = x^2</math>, and 0 and 1 are automorphic numbers in every base. These solutions are called '''trivial automorphic numbers'''. If <math>b</math> is a [[prime power]], then the ring of <math>b</math>-adic numbers has no zero-divisors other than 0, so the only fixed points of <math>f(x) = x^2</math> are 0 and 1. As a result, '''nontrivial automorphic numbers''', those other than 0 and 1, only exist when the base <math>b</math> has at least two distinct prime factors. ===Automorphic numbers in base ''b''=== All <math>b</math>-adic numbers are represented in base <math>b</math>, using A−Z to represent digit values 10 to 35. {| class="wikitable" ! <math>b</math> ! Prime factors of <math>b</math> ! Fixed points in <math>\mathbb{Z}/b\mathbb{Z}</math> of <math>f(x) = x^2</math> ! <math>b</math>-adic fixed points of <math>f(x) = x^2</math> ! Automorphic numbers in base <math>b</math> |----- | 6 || 2, 3 || 0, 1, 3, 4 || <math>\ldots 0000000000</math> <math>\ldots 0000000001</math> <math>\ldots 2221350213</math> <math>\ldots 3334205344</math> || 0, 1, 3, 4, 13, 44, 213, 344, 5344, 50213, 205344, 350213, 1350213, 4205344, 21350213, 34205344, 221350213, 334205344, 2221350213, 3334205344, ... |----- | 10 || 2, 5 || 0, 1, 5, 6 || <math>\ldots 0000000000</math> <math>\ldots 0000000001</math> <math>\ldots 8212890625</math> <math>\ldots 1787109376</math> || 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, ... |----- | 12 || 2, 3 || 0, 1, 4, 9 || <math>\ldots 0000000000</math> <math>\ldots 0000000001</math> <math>\ldots 21\text{B}61\text{B}3854</math> <math>\ldots 9\text{A}05\text{A}08369</math> || 0, 1, 4, 9, 54, 69, 369, 854, 3854, 8369, B3854, 1B3854, A08369, 5A08369, 61B3854, B61B3854, 1B61B3854, A05A08369, 21B61B3854, 9A05A08369, ... |----- | 14 || 2, 7 || 0, 1, 7, 8 || <math>\ldots 0000000000</math> <math>\ldots 0000000001</math> <math>\ldots 7337\text{A}\text{A}0\text{C}37</math> <math>\ldots 6\text{A}\text{A}633\text{D}1\text{A}8</math> || 0, 1, 7, 8, 37, A8, 1A8, C37, D1A8, 3D1A8, A0C37, 33D1A8, AA0C37, 633D1A8, 7AA0C37, 37AA0C37, A633D1A8, 337AA0C37, AA633D1A8, 6AA633D1A8, 7337AA0C37, ... |----- | 15 || 3, 5 || 0, 1, 6, 10 || <math>\ldots 0000000000</math> <math>\ldots 0000000001</math> <math>\ldots 624\text{D}4\text{B}\text{D}\text{A}86</math> <math>\ldots 8\text{C}\text{A}1\text{A}3146\text{A}</math> || 0, 1, 6, A, 6A, 86, 46A, A86, 146A, DA86, 3146A, BDA86, 4BDA86, A3146A, 1A3146A, D4BDA86, 4D4BDA86, A1A3146A, 24D4BDA86, CA1A3146A, 624D4BDA86, 8CA1A3146A, ... |----- | 18 || 2, 3 || 0, 1, 9, 10 || ...000000 ...000001 ...4E1249 ...D3GFDA || |----- | 20 || 2, 5 || 0, 1, 5, 16 || ...000000 ...000001 ...1AB6B5 ...I98D8G || |----- | 21 || 3, 7 || 0, 1, 7, 15 || ...000000 ...000001 ...86H7G7 ...CE3D4F || |----- | 22 || 2, 11 || 0, 1, 11, 12 || ...000000 ...000001 ...8D185B ...D8KDGC || |----- | 24 || 2, 3 || 0, 1, 9, 16 || ...000000 ...000001 ...E4D0L9 ...9JAN2G || |----- | 26 || 2, 13 || 0, 1, 13, 14 || ...0000 ...0001 ...1G6D ...O9JE || |----- | 28 || 2, 7 || 0, 1, 8, 21 || ...0000 ...0001 ...AAQ8 ...HH1L || |----- | 30 || 2, 3, 5 || 0, 1, 6, 10, 15, 16, 21, 25 || ...0000 ...0001 ...B2J6 ...H13A ...1Q7F ...S3MG ...CSQL ...IRAP || |----- | 33 || 3, 11 || 0, 1, 12, 22 || ...0000 ...0001 ...1KPM ...VC7C || |----- | 34 || 2, 17 || 0, 1, 17, 18 || ...0000 ...0001 ...248H ...VTPI |----- | 35 || 5, 7 || 0, 1, 15, 21 || ...0000 ...0001 ...5MXL ...TC1F || |----- | 36 || 2, 3 || 0, 1, 9, 28 || ...0000 ...0001 ...DN29 ...MCXS || |} ==Extensions== Automorphic numbers can be extended to any such polynomial function of [[degree of a polynomial|degree]] <math>n</math> <math display="inline">f(x) = \sum_{i = 0}^{n} a_i x^i</math> with ''b''-adic coefficients <math>a_i</math>. These generalised automorphic numbers form a [[Tree structure|tree]]. ===''a''-automorphic numbers=== An <math>a</math>-'''automorphic number''' occurs when the polynomial function is <math>f(x) = ax^2</math> For example, with <math>b = 10</math> and <math>a = 2</math>, as there are two fixed points for <math>f(x) = 2x^2</math> in <math>\mathbb{Z}/10\mathbb{Z}</math> (<math>x = 0</math> and <math>x = 8</math>), according to [[Hensel's lemma]] there are two 10-adic fixed points for <math>f(x) = 2x^2</math>, : <math>\ldots 0000000000</math> : <math>\ldots 0893554688</math> so the 2-automorphic numbers in base 10 are 0, 8, 88, 688, 4688... ===Trimorphic numbers=== A '''trimorphic number''' or '''spherical number''' occurs when the polynomial function is <math>f(x) = x^3</math>.<ref>[http://www.numericana.com/answer/p-adic.htm#decimal See Gérard Michon's article at]</ref> All automorphic numbers are trimorphic. The terms ''circular'' and ''spherical'' were formerly used for the slightly different case of a number whose powers all have the same last digit as the number itself.<ref>{{cite OED|spherical number}}</ref> For base <math>b = 10</math>, the trimorphic numbers are: :0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, ... {{OEIS|id=A033819}} For base <math>b = 12</math>, the trimorphic numbers are: :0, 1, 3, 4, 5, 7, 8, 9, B, 15, 47, 53, 54, 5B, 61, 68, 69, 75, A7, B3, BB, 115, 253, 368, 369, 4A7, 5BB, 601, 715, 853, 854, 969, AA7, BBB, 14A7, 2369, 3853, 3854, 4715, 5BBB, 6001, 74A7, 8368, 8369, 9853, A715, BBBB, ... ==Programming example== <syntaxhighlight lang="python"> def hensels_lemma(polynomial_function, base: int, power: int) -> list[int]: """Hensel's lemma.""" if power == 0: return [0] if power > 0: roots = hensels_lemma(polynomial_function, base, power - 1) new_roots = [] for root in roots: for i in range(0, base): new_i = i * base ** (power - 1) + root new_root = polynomial_function(new_i) % pow(base, power) if new_root == 0: new_roots.append(new_i) return new_roots base = 10 digits = 10 def automorphic_polynomial(x: int) -> int: return x ** 2 - x for i in range(1, digits + 1): print(hensels_lemma(automorphic_polynomial, base, i)) </syntaxhighlight> ==See also== * [[Arithmetic dynamics]] * [[Kaprekar number]] * [[p-adic number|''p''-adic number]] * [[p-adic analysis|''p''-adic analysis]] * [[Zero-divisor]] ==References== <references /> * {{PlanetMath |urlname=examplesof1automorphicnumbers |title=examples of 1-automorphic numbers}} == External links == *{{MathWorld | urlname=AutomorphicNumber | title=Automorphic number}} *{{MathWorld | urlname=TrimorphicNumber | title=Trimorphic Number }} {{Classes of natural numbers}} [[Category:Arithmetic dynamics]] [[Category:Base-dependent integer sequences]] [[Category:Mathematical analysis]] [[Category:Modular arithmetic]] [[Category:Number theory]] [[Category:P-adic numbers]] [[Category:Ring theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite OED
(
edit
)
Template:Classes of natural numbers
(
edit
)
Template:MathWorld
(
edit
)
Template:No footnotes
(
edit
)
Template:OEIS
(
edit
)
Template:PlanetMath
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)