Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
BIBO stability
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|When a system's outputs are bounded for every bounded input}} {{No footnotes|date=April 2009}} In [[signal processing]], specifically [[control theory]], '''bounded-input, bounded-output''' ('''BIBO''') '''stability''' is a form of [[Control theory#Stability|stability]] for [[Signal (information theory)|signal]]s and [[Control system|systems]] that take inputs. If a system is BIBO stable, then the output will be [[Bounded function|bounded]] for every input to the system that is bounded. A signal is bounded if there is a finite value <math>B > 0</math> such that the signal magnitude never exceeds <math>B</math>, that is :For [[discrete-time]] signals: <math>\exists B \forall n(\ |y[n]| \leq B) \quad n \in \mathbb{Z}</math> :For [[continuous-time]] signals: <math>\exists B \forall t(\ |y(t)| \leq B) \quad t \in \mathbb{R}</math> == Time-domain condition for linear time-invariant systems== ===Continuous-time necessary and sufficient condition=== For a [[continuous function|continuous time]] [[LTI system theory|linear time-invariant (LTI)]] system, the condition for BIBO stability is that the [[impulse response]], <math> h(t)</math> , be [[P-integrable function|absolutely integrable]], i.e., its [[Lp space|L<sup>1</sup> norm]] exists. : <math> \int_{-\infty}^\infty \left|h(t)\right|\,\mathord{\operatorname{d}}t = \| h \|_1 \in \mathbb{R}</math> ===Discrete-time sufficient condition=== For a [[discrete time]] LTI system, the condition for BIBO stability is that the [[impulse response]] be [[P-integrable function|absolutely summable]], i.e., its <math>\ell^1</math> [[Lp space|norm]] exists. :<math>\ \sum_{n=-\infty}^\infty |h[n]| = \| h \|_1 \in \mathbb{R}</math> ====Proof of sufficiency==== Given a [[discrete mathematics|discrete]] time LTI system with [[impulse response]] <math>\ h[n]</math> the relationship between the input <math>\ x[n]</math> and the output <math>\ y[n]</math> is :<math>\ y[n] = h[n] * x[n]</math> where <math>*</math> denotes [[convolution]]. Then it follows by the definition of convolution :<math>\ y[n] = \sum_{k=-\infty}^\infty h[k] x[n-k]</math> Let <math>\| x \|_{\infty}</math> be the maximum value of <math>\ |x[n]|</math>, i.e., the [[Supremum norm|<math>L_{\infty}</math>-norm]]. :<math>\left|y[n]\right| = \left|\sum_{k=-\infty}^\infty h[n-k] x[k]\right|</math> ::<math>\le \sum_{k=-\infty}^\infty \left|h[n-k]\right| \left|x[k]\right|</math> (by the [[triangle inequality]]) : <math> \begin{align} & \le \sum_{k=-\infty}^\infty \left|h[n-k]\right| \| x \|_\infty \\ & = \| x \|_{\infty} \sum_{k=-\infty}^\infty \left|h[n-k]\right| \\ & = \| x \|_{\infty} \sum_{k=-\infty}^\infty \left|h[k]\right| \end{align} </math> If <math>h[n]</math> is absolutely summable, then <math>\sum_{k=-\infty}^{\infty}{\left|h[k]\right|} = \| h \|_1 \in \mathbb{R}</math> and :<math>\| x \|_\infty \sum_{k=-\infty}^\infty \left|h[k]\right| = \| x \|_\infty \| h \|_1</math> So if <math>h[n]</math> is absolutely summable and <math>\left|x[n]\right|</math> is bounded, then <math>\left|y[n]\right|</math> is bounded as well because <math>\| x \|_{\infty} \| h \|_1 \in \mathbb{R}</math>. The proof for continuous-time follows the same arguments. == Frequency-domain condition for linear time-invariant systems== === Continuous-time signals === For a [[rational function|rational]] and [[continuous function|continuous-time system]], the condition for stability is that the [[region of convergence]] (ROC) of the [[Laplace transform]] includes the [[complex plane|imaginary axis]]. When the system is [[Causal system|causal]], the ROC is the [[open region]] to the right of a vertical line whose [[abscissa]] is the [[real part]] of the "largest pole", or the [[pole (complex analysis)|pole]] that has the greatest real part of any pole in the system. The real part of the largest pole defining the ROC is called the [[abscissa of convergence]]. Therefore, all poles of the system must be in the strict left half of the [[s-plane]] for BIBO stability. This stability condition can be derived from the above time-domain condition as follows: :<math> \begin{align} \int_{-\infty}^\infty \left|h(t)\right| \, dt & = \int_{-\infty}^\infty \left|h(t)\right| \left| e^{-j \omega t }\right| \, dt \\ & = \int_{-\infty}^\infty \left|h(t) (1 \cdot e)^{-j \omega t} \right| \, dt \\ & = \int_{-\infty}^\infty \left|h(t) (e^{\sigma + j \omega})^{- t} \right| \, dt \\ & = \int_{-\infty}^\infty \left|h(t) e^{-s t} \right| \, dt \end{align} </math> where <math>s = \sigma + j \omega</math> and <math>\operatorname{Re}(s) = \sigma = 0.</math> The [[region of convergence]] must therefore include the [[complex plane|imaginary axis]]. === Discrete-time signals === For a [[rational function|rational]] and [[discrete signal|discrete time system]], the condition for stability is that the [[Laplace transform#Region of convergence|region of convergence]] (ROC) of the [[z-transform]] includes the [[unit circle]]. When the system is [[Causal system|causal]], the ROC is the [[open region]] outside a circle whose radius is the magnitude of the [[pole (complex analysis)|pole]] with largest magnitude. Therefore, all poles of the system must be inside the [[unit circle]] in the [[Z-transform|z-plane]] for BIBO stability. This stability condition can be derived in a similar fashion to the continuous-time derivation: :<math> \begin{align} \sum_{n = -\infty}^\infty \left|h[n]\right| & = \sum_{n = -\infty}^\infty \left|h[n]\right| \left| e^{-j \omega n} \right| \\ & = \sum_{n = -\infty}^\infty \left|h[n] (1 \cdot e)^{-j \omega n} \right| \\ & =\sum_{n = -\infty}^\infty \left|h[n] (r e^{j \omega})^{-n} \right| \\ & = \sum_{n = -\infty}^\infty \left|h[n] z^{- n} \right| \end{align} </math> where <math>z = r e^{j \omega}</math> and <math>r = |z| = 1</math>. The [[Laplace transform#Region of convergence|region of convergence]] must therefore include the [[unit circle]]. == See also == * [[LTI system theory]] * [[Finite impulse response|Finite impulse response (FIR) filter]] * [[Infinite impulse response|Infinite impulse response (IIR) filter]] * [[Nyquist plot]] * [[Routh–Hurwitz stability criterion]] * [[Bode plot#Gain margin and phase margin|Bode plot]] * [[Phase margin]] * [[Root locus|Root locus method]] * [[Input-to-state stability]] ==Further reading== {{refbegin}} *Gordon E. Carlson ''Signal and Linear Systems Analysis with Matlab'' second edition, Wiley, 1998, {{ISBN|0-471-12465-6}} *John G. Proakis and Dimitris G. Manolakis ''Digital Signal Processing Principals, Algorithms and Applications'' third edition, Prentice Hall, 1996, {{ISBN|0-13-373762-4}} *D. Ronald Fannin, William H. Tranter, and Rodger E. Ziemer ''Signals & Systems Continuous and Discrete'' fourth edition, Prentice Hall, 1998, {{ISBN|0-13-496456-X}} *[http://cnx.org/content/m12319/latest/ Proof of the necessary conditions for BIBO stability.] *Christophe Basso ''Designing Control Loops for Linear and Switching Power Supplies: A Tutorial Guide'' first edition, Artech House, 2012, 978-1608075577 *{{cite journal|author=Michael Unser|journal=IEEE Transactions on Signal Processing|volume=68|date=2020|pages=5904–5913|title=A Note on BIBO Stability|doi=10.1109/TSP.2020.3025029|arxiv=2005.14428|bibcode=2020ITSP...68.5904U }} {{refend}} ==References== {{reflist}} [[Category:Signal processing]] [[Category:Digital signal processing]] [[Category:Articles containing proofs]] [[Category:Stability theory]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite journal
(
edit
)
Template:ISBN
(
edit
)
Template:No footnotes
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)