Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli's inequality
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Inequality about exponentiations of ''1+x''}} [[File:Bernoulli inequality.svg|right|thumb|An illustration of Bernoulli's inequality, with the [[graph of a function|graph]]s of <math>y = (1+x)^r</math> and <math>y = 1+rx</math> shown in red and blue respectively. Here, <math>r=3.</math>]] In [[mathematics]], '''Bernoulli's inequality''' (named after [[Jacob Bernoulli]]) is an [[inequality (mathematics)|inequality]] that approximates [[exponentiation]]s of <math>1+x</math>. It is often employed in [[real analysis]]. It has several useful variants:<ref>{{cite book|last=Brannan|first=D. A.|url=https://books.google.com/books?id=N8bL9lQUGJgC&pg=PA262|title=A First Course in Mathematical Analysis|publisher=Cambridge University Press|year=2006|isbn=9781139458955|page=20}}</ref> == Integer exponent == * Case 1: <math>(1 + x)^r \geq 1 + rx</math> for every integer <math>r\geq 1</math> and real number <math>x\geq-1</math>. The inequality is strict if <math>x\neq 0</math> and <math>r\geq 2</math>. * Case 2: <math>(1 + x)^r \geq 1 + rx</math> for every integer <math>r\geq 0</math> and every real number <math>x\geq -2</math>.<ref>Excluding the case {{math|1=''r'' = 0}} and {{math|1=''x'' = –1}}, or assuming that [[Zero to the power of zero|{{math|1=0<sup>0</sup> = 1}}]].</ref> * Case 3: <math>(1 + x)^r \geq 1 + rx</math> for every [[parity (mathematics)|even]] integer <math>r\geq 0</math> and every real number <math>x</math>. == Real exponent == * <math>(1 + x)^r \geq 1 + rx</math> for every real number <math>r\geq 1</math> and <math>x\geq -1</math>. The inequality is strict if <math>x\neq 0</math> and <math>r\neq 1</math>. * <math>(1 + x)^r \leq 1 + rx</math> for every real number <math>0\leq r\leq 1</math> and <math>x\geq -1</math>. ==History== Jacob Bernoulli first published the inequality in his treatise "Positiones Arithmeticae de Seriebus Infinitis" (Basel, 1689), where he used the inequality often.<ref name=autogenerated1>[http://hsm.stackexchange.com/a/1891 mathematics – First use of Bernoulli's inequality and its name – History of Science and Mathematics Stack Exchange<!-- Bot generated title -->]</ref> According to Joseph E. Hofmann, Über die Exercitatio Geometrica des M. A. Ricci (1963), p. 177, the inequality is actually due to Sluse in his Mesolabum (1668 edition), Chapter IV "De maximis & minimis".<ref name=autogenerated1 /> ==Proof for integer exponent== The first case has a simple inductive proof: Suppose the statement is true for <math>r=k</math>: :<math>(1+x)^k \ge 1+kx. </math> Then it follows that :<math> \begin{align} (1+x)^{k+1} &= (1+x)^k(1+x) \\ &\ge (1+kx)(1+x) \\ &=1+kx+x+kx^2 \\ &=1+x(k+1)+kx^2 \\ &\ge 1+(k+1)x \end{align} </math> Bernoulli's inequality can be proved for case 2, in which <math>r</math> is a non-negative integer and <math>x\ge-2</math>, using [[mathematical induction]] in the following form: * we prove the inequality for <math>r\in\{0,1\}</math>, * from validity for some ''r'' we deduce validity for <math>r+2</math>. For <math>r=0</math>, :<math>(1+x)^0 \ge 1+0x</math> is equivalent to <math>1\geq 1</math> which is true. Similarly, for <math>r=1</math> we have :<math>(1+x)^r=1+x \ge 1+rx. </math> Now suppose the statement is true for <math>r=k</math>: :<math>(1+x)^k \ge 1+kx. </math> Then it follows that :<math> \begin{align} (1+x)^{k+2} &= (1+x)^k(1+x)^2 \\ &\ge (1+kx)\left(1+2x+x^2\right) \qquad\qquad\qquad\text{ by hypothesis and }(1+x)^2\ge 0 \\ &=1+2x+x^2+kx+2kx^2+kx^3 \\ &=1+(k+2)x+kx^2(x+2)+x^2 \\ &\ge 1+(k+2)x \end{align} </math> since <math>x^2\ge 0</math> as well as <math>x+2\ge0</math>. By the modified induction we conclude the statement is true for every non-negative integer <math>r</math>. By noting that if <math>x<-2</math>, then <math>1+rx</math> is negative gives case 3. ==Generalizations== === Generalization of exponent === The exponent <math>r</math> can be generalized to an arbitrary real number as follows: if <math>x>-1</math>, then :<math>(1 + x)^r \geq 1 + rx</math> for <math>r\leq 0</math> or <math>\geq 1</math>, and :<math>(1 + x)^r \leq 1 + rx</math> for <math>0\leq r\leq 1</math>. This generalization can be proved by convexity (see below) or by comparing [[derivative]]s. The strict versions of these inequalities require <math>x\neq 0</math> and <math>r\neq 0, 1</math>. The case <math>0 \leq r \leq 1 </math> can also be derived from the case <math>r\geq 1</math> by noting that (using the main case result) <math> \left(1 + \frac{x}{r}\right)^{r} \geq 1 + x = \left[(1+x)^{\frac{1}{r}}\right]^r </math> and by using the fact that <math>f(x) = x^r </math> is monotonic. We can conclude that <math>1 + x/r \geq (1+x)^{\frac{1}{r}}</math> for <math>r \geq 1</math>, therefore <math>(1 + x)^l \leq 1 + lx</math> for <math>0 < l = 1/r \leq 1</math>. The leftover case <math> l = 0 </math> is verified separately. === Generalization of base === Instead of <math>(1+x)^n</math> the inequality holds also in the form <math>(1+x_1)(1+x_2)\dots(1+x_r) \geq 1+x_1+x_2 + \dots + x_r</math> where <math>x_1, x_2, \dots , x_r</math> are real numbers, all greater than <math>-1</math>, all with the same sign. Bernoulli's inequality is a special case when <math>x_1 = x_2 = \dots = x_r = x</math>. This generalized inequality can be proved by mathematical induction. {{collapse top| title=Proof}} In the first step we take <math>n=1</math>. In this case the inequality <math>1+x_1 \geq 1 + x_1</math> is obviously true. In the second step we assume validity of the inequality for <math>r</math> numbers and deduce validity for <math>r+1</math> numbers. We assume that<math display="block">(1+x_1)(1+x_2)\dots(1+x_r) \geq 1+x_1+x_2 + \dots + x_r</math>is valid. After multiplying both sides with a positive number <math>(x_{r+1} + 1)</math> we get: <math>\begin{alignat}{2} (1+x_1)(1+x_2)\dots(1+x_r)(1+x_{r+1}) \geq & (1+x_1+x_2 + \dots + x_r)(1+x_{r+1}) \\ \geq & (1+x_1+x_2+ \dots + x_r) \cdot 1 + (1+x_1+x_2+ \dots + x_r) \cdot x_{r+1} \\ \geq & (1+x_1+x_2+ \dots + x_r) + x_{r+1} + x_1 x_{r+1} + x_2 x_{r+1} + \dots + x_r x_{r+1} \\ \end{alignat}</math> As <math>x_1, x_2, \dots x_r, x_{r+1}</math> all have the same sign, the products <math>x_1 x_{r+1}, x_2 x_{r+1}, \dots x_r x_{r+1}</math> are all positive numbers. So the quantity on the right-hand side can be bounded as follows:<math display="block">(1+x_1+x_2+ \dots + x_r) + x_{r+1} + x_1 x_{r+1} + x_2 x_{r+1} + \dots + x_r x_{r+1} \geq 1+x_1+x_2+ \dots + x_r + x_{r+1},</math>what was to be shown. {{cob}} === Strengthened version === The following theorem presents a strengthened version of the Bernoulli inequality, incorporating additional terms to refine the estimate under specific conditions. Let the expoent <math>r</math> be a nonnegative integer and let <math>x</math> be a real number with <math>x \ge -2</math> if <math>r</math> is odd and greater than 1. Then <math>(1 + x)^{r} \geq 1 + rx + \lfloor r/2 \rfloor x^2</math> with equality if and only if <math>r \in \{0, 1, 2\}</math> or <math>x \in \{-2, 0\}</math>.<ref>{{Cite journal |last=Bradley |first=David M. |date=2024-12-23 |title=A Stronger Version of Bernoulli’s Inequality |url=https://link.springer.com/article/10.1007/s00283-024-10396-5 |journal=The Mathematical Intelligencer |language=en |doi=10.1007/s00283-024-10396-5 |issn=0343-6993|url-access=subscription }}</ref> == Related inequalities == The following inequality estimates the <math>r</math>-th power of <math>1+x</math> from the other side. For any real numbers <math>x</math> and <math>r</math> with <math>r >0</math>, one has :<math>(1 + x)^r \le e^{rx},</math> where <math>e =</math> [[e (number)|2.718...]]. This may be proved using the inequality :<math> \left(1 + \frac{1}{k}\right)^k < e.</math> ==Alternative form== An alternative form of Bernoulli's inequality for <math> t\geq 1 </math> and <math> 0\le x\le 1 </math> is: :<math>(1-x)^t \ge 1-xt.</math> This can be proved (for any integer <math>t</math>) by using the formula for [[geometric series]]: (using <math>y=1-x</math>) :<math>t=1+1+\dots+1 \ge 1+y+y^2+\ldots+y^{t-1} = \frac{1-y^t}{1-y},</math> or equivalently <math>xt \ge 1-(1-x)^t.</math> ==Alternative proofs== ===Arithmetic and geometric means=== An elementary proof for <math>0\le r\le 1</math> and <math>x \ge -1</math> can be given using [[Inequality of arithmetic and geometric means#Weighted AM–GM inequality|weighted AM-GM]]. Let <math>\lambda_1, \lambda_2</math> be two non-negative real constants. By weighted AM-GM on <math>1,1+x</math> with weights <math>\lambda_1, \lambda_2</math> respectively, we get :<math>\dfrac{\lambda_1\cdot 1 + \lambda_2\cdot (1+x)}{\lambda_1+\lambda_2}\ge \sqrt[\lambda_1+\lambda_2]{(1+x)^{\lambda_2}}.</math> Note that :<math>\dfrac{\lambda_1\cdot 1 + \lambda_2\cdot (1+x)}{\lambda_1+\lambda_2}=\dfrac{\lambda_1+\lambda_2+\lambda_2x}{\lambda_1+\lambda_2}=1+\dfrac{\lambda_2}{\lambda_1+\lambda_2}x</math> and :<math>\sqrt[\lambda_1+\lambda_2]{(1+x)^{\lambda_2}} = (1+x)^{\frac{\lambda_2}{\lambda_1+\lambda_2}},</math> so our inequality is equivalent to :<math>1 + \dfrac{\lambda_2}{\lambda_1+\lambda_2}x \ge (1+x)^{\frac{\lambda_2}{\lambda_1+\lambda_2}}.</math> After substituting <math>r = \dfrac{\lambda_2}{\lambda_1+\lambda_2}</math> (bearing in mind that this implies <math>0\le r\le 1</math>) our inequality turns into :<math>1+rx \ge (1+x)^r</math> which is Bernoulli's inequality for <math>0\le r\le 1</math>. The case <math>r\ge 1</math> can be derived from <math>0\le r\le 1</math> in the same way as the case <math>0\le r\le 1</math> can be derived from <math>r\ge 1</math>, see above "Generalization of exponent". ===Geometric series=== Bernoulli's inequality {{NumBlk|:|<math>(1+x)^r \ge 1+rx </math>|1}} is equivalent to {{NumBlk|:|<math>(1+x)^r - 1-rx \ge 0,</math>|2}} and by the formula for [[geometric series]] (using ''y'' = 1 + ''x'') we get {{NumBlk|:|<math> (1+x)^r - 1 = y^r-1 = \left(\sum^{r-1}_{k=0}y^k\right) \cdot (y-1) = \left(\sum^{r-1}_{k=0}(1+x)^k\right)\cdot x</math>|3}} which leads to {{NumBlk|:|<math>(1+x)^r - 1-rx = \left(\left(\sum^{r-1}_{k=0}(1+x)^k\right) - r\right)\cdot x = \left(\sum^{r-1}_{k=0}\left((1+x)^k-1\right)\right)\cdot x \ge 0.</math>|{{EquationRef|4}}}} Now if <math>x \ge 0</math> then by monotony of the powers each summand <math>(1+x)^k - 1 = (1+x)^k - 1^k \ge 0</math>, and therefore their sum is greater <math>0</math> and hence the product on the [[Sides of an equation|LHS]] of ({{EquationNote|4}}). If <math> 0 \ge x\ge -2 </math> then by the same arguments <math>1\ge(1+x)^k</math> and thus all addends <math>(1+x)^k-1</math> are non-positive and hence so is their sum. Since the product of two non-positive numbers is non-negative, we get again ({{EquationNote|4}}). ===Binomial theorem=== One can prove Bernoulli's inequality for ''x'' ≥ 0 using the [[binomial theorem]]. It is true trivially for ''r'' = 0, so suppose ''r'' is a positive integer. Then <math>(1+x)^r = 1 + rx + \tbinom r2 x^2 + ... + \tbinom rr x^r.</math> Clearly <math>\tbinom r2 x^2 + ... + \tbinom rr x^r \ge 0,</math> and hence <math>(1+x)^r \ge 1+rx</math> as required. ===Using convexity=== For <math>0\neq x> -1</math> the function <math>h(\alpha)=(1+x)^\alpha</math> is strictly convex. Therefore, for <math>0<\alpha<1</math> holds <math>(1+x)^\alpha=h(\alpha)=h((1-\alpha)\cdot 0+\alpha\cdot 1)<(1-\alpha) h(0)+\alpha h(1)=1+\alpha x</math> and the reversed inequality is valid for <math>\alpha<0</math> and <math>\alpha>1</math>. Another way of using convexity is to re-cast the desired inequality to <math>\log (1 + x) \geq \frac{1}{r}\log( 1 + rx)</math> for real <math>r\geq 1</math> and real <math>x > -1/r</math>. This inequality can be proved using the fact that the <math>\log</math> function is concave, and then using Jensen's inequality in the form <math> \log( p \, a + (1-p)b ) \geq p\log(a) + (1-p)\log(b) </math> to give: <math>\log(1+x) = \log(\frac{1}{r}(1+rx)+\frac{r-1}{r}) \geq \frac{1}{r} \log (1+rx)+\frac{r-1}{r}\log 1 = \frac{1}{r} \log (1+rx) </math> which is the desired inequality. ==Notes== {{reflist}} ==References== * {{cite book|last1=Carothers|first1=N.L.|title=Real analysis|url=https://archive.org/details/realanalysis0000caro/page/9|url-access=registration|year=2000|publisher=Cambridge University Press|location=Cambridge|isbn=978-0-521-49756-5|page=[https://archive.org/details/realanalysis0000caro/page/9 9]}} * {{cite book|last1=Bullen|first1=P. S.|title=Handbook of means and their inequalities|url=https://archive.org/details/handbookmeansthe00bull|url-access=limited|year=2003|publisher=Kluwer Academic Publ.|location=Dordercht [u.a.]|isbn=978-1-4020-1522-9|page=[https://archive.org/details/handbookmeansthe00bull/page/n26 4]}} * {{cite book|last1=Zaidman|first1=S.|title=Advanced calculus : an introduction to mathematical analysis|url=https://archive.org/details/advancedcalculus00zaid|url-access=limited|year=1997|publisher=World Scientific|location=River Edge, NJ|isbn=978-981-02-2704-3|page=[https://archive.org/details/advancedcalculus00zaid/page/n38 32]}} * {{cite book|last1=[[Dragoslav Mitrinović|Mitrinović]]|first1=D. S.|title=Analytic Inequalities. In cooperation with [[Petar Vasić|P. M. Vasić]]|series = Die Grundlehren der mathematischen Wissenschaften| volume = 165| year=1970|publisher=[[Springer Science+Business Media|Springer Verlag]]|location=[[Berlin]], Heidelberg, New York |isbn=978-3-642-99972-7|doi=10.1007/978-3-642-99970-3|zbl=0199.38101 }} == External links == * {{MathWorld |title= Bernoulli Inequality |urlname= BernoulliInequality}} * [https://demonstrations.wolfram.com/BernoulliInequality/ Bernoulli Inequality] by Chris Boucher, [[Wolfram Demonstrations Project]]. * {{cite web|title=Introduction to Inequalities|url=https://www.mediafire.com/file/1mw1tkgozzu |author=Arthur Lohwater|year=1982|publisher=Online e-book in PDF format}} {{DEFAULTSORT:Bernoulli's Inequality}} [[Category:Inequalities (mathematics)]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Cob
(
edit
)
Template:Collapse top
(
edit
)
Template:EquationNote
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:NumBlk
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)