Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli distribution
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Probability distribution modeling a coin toss which need not be fair}} {{Use American English|date = January 2019}} {{Probability distribution |name =Bernoulli distribution |type =mass |pdf_image =[[File:Bernoulli Distribution.PNG|325px|Funzione di densità di una variabile casuale normale]] Three examples of Bernoulli distribution: {{legend|7F0000|2=<math>P(x=0) = 0{.}2</math> and <math>P(x=1) = 0{.}8</math>}} {{legend|00007F|2=<math>P(x=0) = 0{.}8</math> and <math>P(x=1) = 0{.}2</math>}} {{legend|007F00|2=<math>P(x=0) = 0{.}5</math> and <math>P(x=1) = 0{.}5</math>}} |cdf_image = |parameters =<math>0 \leq p \leq 1</math><br /> <math>q = 1 - p</math> |support =<math>k \in \{0,1\}</math> |pdf =<math>\begin{cases} q=1-p & \text{if }k=0 \\ p & \text{if }k=1 \end{cases} </math> |cdf =<math>\begin{cases} 0 & \text{if } k < 0 \\ 1 - p & \text{if } 0 \leq k < 1 \\ 1 & \text{if } k \geq 1 \end{cases}</math> |mean =<math> p</math> |median =<math>\begin{cases} 0 & \text{if } p < 1/2\\ \left[0, 1\right] & \text{if } p = 1/2\\ 1 & \text{if } p > 1/2 \end{cases}</math> |mode =<math>\begin{cases} 0 & \text{if } p < 1/2\\ 0, 1 & \text{if } p = 1/2\\ 1 & \text{if } p > 1/2 \end{cases}</math> |variance =<math>p(1-p) = pq </math> |mad =<math>2p(1-p) = 2pq</math> |skewness =<math>\frac{q - p}{\sqrt{pq}}</math> |kurtosis =<math>\frac{1 - 6pq}{pq}</math> |entropy =<math>-q\ln q - p\ln p</math> |mgf =<math>q+pe^t</math> |char =<math>q+pe^{it}</math> |pgf =<math>q+pz</math> |fisher =<math> \frac{1}{pq} </math>| }} {{Probability fundamentals}} In [[probability theory]] and [[statistics]], the '''Bernoulli distribution''', named after Swiss mathematician [[Jacob Bernoulli]],<ref>{{cite book |first=James Victor |last=Uspensky |title=Introduction to Mathematical Probability |publisher=McGraw-Hill |location=New York |year=1937 |page=45 |oclc=996937 }}</ref> is the [[discrete probability distribution]] of a [[random variable]] which takes the value 1 with probability <math>p</math> and the value 0 with probability <math>q = 1-p</math>. Less formally, it can be thought of as a model for the set of possible outcomes of any single [[experiment]] that asks a [[yes–no question]]. Such questions lead to [[outcome (probability)|outcomes]] that are [[Boolean-valued function|Boolean]]-valued: a single [[bit]] whose value is success/[[yes and no|yes]]/[[Truth value|true]]/[[Binary code|one]] with [[probability]] ''p'' and failure/no/[[false (logic)|false]]/[[Binary code|zero]] with probability ''q''. It can be used to represent a (possibly biased) [[coin toss]] where 1 and 0 would represent "heads" and "tails", respectively, and ''p'' would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and ''p'' would be the probability of tails). In particular, unfair coins would have <math>p \neq 1/2.</math> The Bernoulli distribution is a special case of the [[binomial distribution]] where a single trial is conducted (so ''n'' would be 1 for such a binomial distribution). It is also a special case of the '''two-point distribution''', for which the possible outcomes need not be 0 and 1.<ref>{{cite book |last1=Dekking |first1=Frederik |last2=Kraaikamp |first2=Cornelis |last3=Lopuhaä |first3=Hendrik |last4=Meester |first4=Ludolf |title=A Modern Introduction to Probability and Statistics |date=9 October 2010 |publisher=Springer London |isbn=9781849969529 |pages=43–48 |edition=1}}</ref> ==Properties== If <math>X</math> is a random variable with a Bernoulli distribution, then: :<math>\Pr(X=1) = p, \Pr(X=0) = q =1 - p.</math> The [[probability mass function]] <math>f</math> of this distribution, over possible outcomes ''k'', is :<math> f(k;p) = \begin{cases} p & \text{if }k=1, \\ q = 1-p & \text {if } k = 0. \end{cases}</math><ref name=":0">{{Cite book|title=Introduction to Probability|last=Bertsekas|author-link=Dimitri Bertsekas|first=Dimitri P.|date=2002|publisher=Athena Scientific|others=[[John Tsitsiklis|Tsitsiklis, John N.]], Τσιτσικλής, Γιάννης Ν.|isbn=188652940X|location=Belmont, Mass.|oclc=51441829}}</ref> This can also be expressed as :<math>f(k;p) = p^k (1-p)^{1-k} \quad \text{for } k\in\{0,1\}</math> or as :<math>f(k;p)=pk+(1-p)(1-k) \quad \text{for } k\in\{0,1\}.</math> The Bernoulli distribution is a special case of the [[binomial distribution]] with <math>n = 1.</math><ref name="McCullagh1989Ch422">{{cite book | last = McCullagh | first = Peter | author-link= Peter McCullagh |author2=Nelder, John |author-link2=John Nelder | title = Generalized Linear Models, Second Edition | publisher = Boca Raton: Chapman and Hall/CRC | year = 1989 | isbn = 0-412-31760-5 |ref=McCullagh1989 |at=Section 4.2.2 }}</ref> The [[kurtosis]] goes to infinity for high and low values of <math>p,</math> but for <math>p=1/2</math> the two-point distributions including the Bernoulli distribution have a lower [[excess kurtosis]], namely −2, than any other probability distribution. The Bernoulli distributions for <math>0 \le p \le 1</math> form an [[exponential family]]. The [[maximum likelihood estimator]] of <math>p</math> based on a random sample is the [[sample mean]]. [[File:PMF and CDF of a bernouli distribution.png|thumb|The probability mass distribution function of a Bernoulli experiment along with its corresponding cumulative distribution function.]] ==Mean== The [[expected value]] of a Bernoulli random variable <math>X</math> is :<math>\operatorname{E}[X]=p</math> This is because for a Bernoulli distributed random variable <math>X</math> with <math>\Pr(X=1)=p</math> and <math>\Pr(X=0)=q</math> we find :<math>\operatorname{E}[X] = \Pr(X=1)\cdot 1 + \Pr(X=0)\cdot 0 = p \cdot 1 + q\cdot 0 = p.</math><ref name=":0" /> == Variance == The [[variance]] of a Bernoulli distributed <math>X</math> is :<math>\operatorname{Var}[X] = pq = p(1-p)</math> We first find :<math>\operatorname{E}[X^2] = \Pr(X=1)\cdot 1^2 + \Pr(X=0)\cdot 0^2 </math> :<math> = p \cdot 1^2 + q\cdot 0^2 = p = \operatorname{E}[X] </math> From this follows :<math>\operatorname{Var}[X] = \operatorname{E}[X^2]-\operatorname{E}[X]^2 = \operatorname{E}[X]-\operatorname{E}[X]^2 </math> :<math> = p-p^2 = p(1-p) = pq</math><ref name=":0" /> With this result it is easy to prove that, for any Bernoulli distribution, its variance will have a value inside <math>[0,1/4]</math>. ==Skewness== The [[skewness]] is <math>\frac{q-p}{\sqrt{pq}}=\frac{1-2p}{\sqrt{pq}}</math>. When we take the standardized Bernoulli distributed random variable <math>\frac{X-\operatorname{E}[X]}{\sqrt{\operatorname{Var}[X]}}</math> we find that this random variable attains <math>\frac{q}{\sqrt{pq}}</math> with probability <math>p</math> and attains <math>-\frac{p}{\sqrt{pq}}</math> with probability <math>q</math>. Thus we get :<math>\begin{align} \gamma_1 &= \operatorname{E} \left[\left(\frac{X-\operatorname{E}[X]}{\sqrt{\operatorname{Var}[X]}}\right)^3\right] \\ &= p \cdot \left(\frac{q}{\sqrt{pq}}\right)^3 + q \cdot \left(-\frac{p}{\sqrt{pq}}\right)^3 \\ &= \frac{1}{\sqrt{pq}^3} \left(pq^3-qp^3\right) \\ &= \frac{pq}{\sqrt{pq}^3} (q^2-p^2) \\ &= \frac{(1-p)^2-p^2}{\sqrt{pq}} \\ &= \frac{1-2p}{\sqrt{pq}} = \frac{q-p}{\sqrt{pq}}. \end{align}</math> ==Higher moments and cumulants== The raw moments are all equal because <math>1^k=1</math> and <math>0^k=0</math>. :<math>\operatorname{E}[X^k] = \Pr(X=1)\cdot 1^k + \Pr(X=0)\cdot 0^k = p \cdot 1 + q\cdot 0 = p = \operatorname{E}[X].</math> The central moment of order <math>k</math> is given by :<math> \mu_k =(1-p)(-p)^k +p(1-p)^k. </math> The first six central moments are :<math>\begin{align} \mu_1 &= 0, \\ \mu_2 &= p(1-p), \\ \mu_3 &= p(1-p)(1-2p), \\ \mu_4 &= p(1-p)(1-3p(1-p)), \\ \mu_5 &= p(1-p)(1-2p)(1-2p(1-p)), \\ \mu_6 &= p(1-p)(1-5p(1-p)(1-p(1-p))). \end{align}</math> The higher central moments can be expressed more compactly in terms of <math>\mu_2</math> and <math>\mu_3</math> :<math>\begin{align} \mu_4 &= \mu_2 (1-3\mu_2 ), \\ \mu_5 &= \mu_3 (1-2\mu_2 ), \\ \mu_6 &= \mu_2 (1-5\mu_2 (1-\mu_2 )). \end{align}</math> The first six cumulants are :<math>\begin{align} \kappa_1 &= p, \\ \kappa_2 &= \mu_2 , \\ \kappa_3 &= \mu_3 , \\ \kappa_4 &= \mu_2 (1-6\mu_2 ), \\ \kappa_5 &= \mu_3 (1-12\mu_2 ), \\ \kappa_6 &= \mu_2 (1-30\mu_2 (1-4\mu_2 )). \end{align}</math> ==Entropy and Fisher's Information== ===Entropy=== Entropy is a measure of uncertainty or randomness in a probability distribution. For a Bernoulli random variable <math>X</math> with success probability <math>p</math> and failure probability <math>q = 1 - p</math>, the entropy <math>H(X)</math> is defined as: :<math>\begin{align} H(X) &= \mathbb{E}_p \ln (\frac{1}{P(X)}) = - [P(X = 0) \ln P(X = 0) + P(X = 1) \ln P(X = 1)] \\ H(X) &= - (q \ln q + p \ln p) , \quad q = P(X = 0), p = P(X = 1) \end{align}</math> The entropy is maximized when <math>p = 0.5</math>, indicating the highest level of uncertainty when both outcomes are equally likely. The entropy is zero when <math>p = 0</math> or <math>p = 1</math>, where one outcome is certain. ===Fisher's Information=== Fisher information measures the amount of information that an observable random variable <math>X</math> carries about an unknown parameter <math>p</math> upon which the probability of <math>X</math> depends. For the Bernoulli distribution, the Fisher information with respect to the parameter <math>p</math> is given by: :<math>\begin{align} I(p) = \frac{1}{pq} \end{align}</math> '''Proof:''' *The '''Likelihood Function''' for a Bernoulli random variable<math>X</math> is: :<math>\begin{align} L(p; X) = p^X (1 - p)^{1 - X} \end{align}</math> This represents the probability of observing <math>X</math> given the parameter <math>p</math>. *The '''Log-Likelihood Function''' is: :<math>\begin{align} \ln L(p; X) = X \ln p + (1 - X) \ln (1 - p) \end{align}</math> *The Score Function (the first derivative of the log-likelihood w.r.t. <math>p</math> is: :<math>\begin{align} \frac{\partial}{\partial p} \ln L(p; X) = \frac{X}{p} - \frac{1 - X}{1 - p} \end{align}</math> *The second derivative of the log-likelihood function is: :<math>\begin{align} \frac{\partial^2}{\partial p^2} \ln L(p; X) = -\frac{X}{p^2} - \frac{1 - X}{(1 - p)^2} \end{align}</math> *'''Fisher information''' is calculated as the negative expected value of the second derivative of the log-likelihood: :<math>\begin{align} I(p) = -E\left[\frac{\partial^2}{\partial p^2} \ln L(p; X)\right] = -\left(-\frac{p}{p^2} - \frac{1 - p}{(1 - p)^2}\right) = \frac{1}{p(1-p)} = \frac{1}{pq} \end{align}</math> It is maximized when <math>p = 0.5</math>, reflecting maximum uncertainty and thus maximum information about the parameter <math>p</math>. ==Related distributions== *If <math>X_1,\dots,X_n</math> are independent, identically distributed ([[Independent and identically distributed random variables|i.i.d.]]) random variables, all [[Bernoulli trial]]s with success probability ''p'', then their [[Sum of independent random variables|sum is distributed]] according to a [[binomial distribution]] with parameters ''n'' and ''p'': *:<math>\sum_{k=1}^n X_k \sim \operatorname{B}(n,p)</math> ([[binomial distribution]]).<ref name=":0" /> :The Bernoulli distribution is simply <math>\operatorname{B}(1, p)</math>, also written as <math display="inline">\mathrm{Bernoulli} (p).</math> *The [[categorical distribution]] is the generalization of the Bernoulli distribution for variables with any constant number of discrete values. *The [[Beta distribution]] is the [[conjugate prior]] of the Bernoulli distribution.<ref>{{Cite web |last1=Orloff |first1=Jeremy |last2=Bloom |first2=Jonathan |date= |title=Conjugate priors: Beta and normal |url=https://math.mit.edu/~dav/05.dir/class15-prep.pdf |access-date=October 20, 2023 |website=math.mit.edu}}</ref> *The [[geometric distribution]] models the number of independent and identical Bernoulli trials needed to get one success. *If <math display="inline">Y \sim \mathrm{Bernoulli}\left(\frac{1}{2}\right)</math>, then <math display="inline">2Y - 1</math> has a [[Rademacher distribution]]. ==See also== *[[Bernoulli process]], a [[random process]] consisting of a sequence of [[Independence (probability theory)|independent]] Bernoulli trials *[[Bernoulli sampling]] *[[Binary entropy function]] *[[Binary decision diagram]] ==References== {{Reflist}} ==Further reading== *{{cite book |last1=Johnson |first1=N. L. |last2=Kotz |first2=S. |last3=Kemp |first3=A. |year=1993 |title=Univariate Discrete Distributions |edition=2nd |publisher=Wiley |isbn=0-471-54897-9 }} *{{cite book |first=John G. |last=Peatman |title=Introduction to Applied Statistics |location=New York |publisher=Harper & Row |year=1963 |pages=162–171 }} ==External links== {{Commons category|Bernoulli distribution}} *{{springer|title=Binomial distribution|id=p/b016420}}. *{{MathWorld|title=Bernoulli Distribution|urlname=BernoulliDistribution}} * Interactive graphic: [http://www.math.wm.edu/~leemis/chart/UDR/UDR.html Univariate Distribution Relationships]. {{ProbDistributions|discrete-finite}} {{DEFAULTSORT:Bernoulli Distribution}} [[Category:Discrete distributions]] [[Category:Conjugate prior distributions]] [[Category:Exponential family distributions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:MathWorld
(
edit
)
Template:ProbDistributions
(
edit
)
Template:Probability distribution
(
edit
)
Template:Probability fundamentals
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Springer
(
edit
)
Template:Use American English
(
edit
)