Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli polynomials
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Use American English|date = March 2019}} {{Short description|Polynomial sequence}} [[File:Bernoulli polynomials.svg|thumb|right|Bernoulli polynomials]] In [[mathematics]], the '''Bernoulli polynomials''', named after [[Jacob Bernoulli]], combine the [[Bernoulli number]]s and [[binomial coefficient]]s. They are used for [[series expansion]] of [[function (mathematics)|functions]], and with the [[Euler–MacLaurin formula]]. These [[polynomial]]s occur in the study of many [[special functions]] and, in particular, the [[Riemann zeta function]] and the [[Hurwitz zeta function]]. They are an [[Appell sequence]] (i.e. a [[Sheffer sequence]] for the ordinary [[derivative]] operator). For the Bernoulli polynomials, the number of crossings of the ''x''-axis in the [[unit interval]] does not go up with the [[degree of a polynomial|degree]]. In the limit of large degree, they approach, when appropriately scaled, the [[trigonometric function|sine and cosine functions]]. A similar set of polynomials, based on a generating function, is the family of '''Euler polynomials'''. ==Representations== The Bernoulli polynomials ''B''<sub>''n''</sub> can be defined by a [[generating function]]. They also admit a variety of derived representations. ===Generating functions=== The generating function for the Bernoulli polynomials is <math display="block">\frac{t e^{xt}}{e^t-1}= \sum_{n=0}^\infty B_n(x) \frac{t^n}{n!}.</math> The generating function for the Euler polynomials is <math display="block">\frac{2 e^{xt}}{e^t+1}= \sum_{n=0}^\infty E_n(x) \frac{t^n}{n!}.</math> ===Explicit formula=== <math display="block">B_n(x) = \sum_{k=0}^n {n \choose k} B_{n-k} x^k,</math> <math display="block">E_m(x)= \sum_{k=0}^m {m \choose k} \frac{E_k}{2^k} \left(x-\tfrac12\right)^{m-k} .</math> for <math>n \geq 0</math>, where <math>B_k</math> are the [[Bernoulli number]]s, and <math>E_k</math> are the [[Euler numbers]]. It follows that <math>B_n(0) = B_n</math> and <math>E_m\big(\tfrac{1}{2}\big) = \tfrac{1}{2^m} E_m</math>. ===Representation by a differential operator=== The Bernoulli polynomials are also given by <math display="block">\ B_n(x) = \frac{ D }{\ e^D -1\ }\ x^n\ </math> where <math>\ D \equiv \frac{ \mathrm{d} }{\ \mathrm{d} x\ }\ </math> is differentiation with respect to {{mvar|x}} and the fraction is expanded as a [[formal power series]]. It follows that <math display="block">\ \int_a^x\ B_n(u)\ \mathrm{d}\ u = \frac{\ B_{n+1}(x) - B_{n+1}(a)\ }{ n + 1 } ~.</math> cf. {{slink||Integrals}} below. By the same token, the Euler polynomials are given by <math display="block">\ E_n(x) = \frac{ 2 }{\ e^D + 1\ }\ x^n ~.</math> ===Representation by an integral operator=== The Bernoulli polynomials are also the unique polynomials determined by <math display="block">\int_x^{x+1} B_n(u)\,du = x^n.</math> The [[integral transform]] <math display="block">(Tf)(x) = \int_x^{x+1} f(u)\,du</math> on polynomials ''f'', simply amounts to <math display="block">\begin{align} (Tf)(x) = {e^D - 1 \over D}f(x) & {} = \sum_{n=0}^\infty {D^n \over (n+1)!}f(x) \\ & {} = f(x) + {f'(x) \over 2} + {f''(x) \over 6} + {f'''(x) \over 24} + \cdots . \end{align}</math> This can be used to produce the [[#Inversion|inversion formulae below]]. == Integral Recurrence == In,<ref>Hurtado Benavides, Miguel Ángel. (2020). De las sumas de potencias a las sucesiones de Appell y su caracterización a través de funcionales. [Tesis de maestría]. Universidad Sergio Arboleda. https://repository.usergioarboleda.edu.co/handle/11232/174</ref><ref>Sergio A. Carrillo; Miguel Hurtado. Appell and Sheffer sequences: on their characterizations through functionals and examples. Comptes Rendus. Mathématique, Tome 359 (2021) no. 2, pp. 205-217. doi : 10.5802/crmath.172. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.172/</ref> it is deduced and proved that the Bernoulli polynomials can be obtained by the following integral recurrence <math display="block">B_{m}(x)=m \int_{0}^{x} B_{m-1}(t)\,dt-m\int_{0}^{1} \int_0^t B_{m-1}(s)\,ds dt.</math> ==Another explicit formula== An explicit formula for the Bernoulli polynomials is given by <math display="block"> B_n(x) = \sum_{k=0}^n \biggl[ \frac{1}{k + 1} \sum_{\ell=0}^k (-1)^\ell { k \choose \ell } (x + \ell)^n \biggr].</math> That is similar to the series expression for the [[Hurwitz zeta function]] in the complex plane. Indeed, there is the relationship <math display="block">B_n(x) = -n \zeta(1 - n,\,x)</math> where <math>\zeta(s,\,q)</math> is the [[Hurwitz zeta function]]. The latter generalizes the Bernoulli polynomials, allowing for non-integer values {{nobr|of {{mvar|n}}.}} The inner sum may be understood to be the {{mvar|n}}th [[forward difference]] of <math>x^m,</math> that is, <math display="block">\Delta^n x^m = \sum_{k=0}^n (-1)^{n - k}{n \choose k}(x + k)^m</math> where <math>\Delta</math> is the [[forward difference operator]]. Thus, one may write <math display="block">B_n(x) = \sum_{k=0}^n \frac{(-1)^k}{k + 1}\Delta^k x^n.</math> This formula may be derived from an identity appearing above as follows. Since the forward difference operator {{math|Δ}} equals <math display="block">\Delta = e^D - 1</math> where {{mvar|D}} is differentiation with respect to {{mvar|x}}, we have, from the [[Mercator series]], <math display="block">\frac{ D }{e^D - 1} = \frac{\log(\Delta + 1)}{\Delta} = \sum_{n=0}^\infty \frac{(-\Delta)^n }{n + 1}.</math> As long as this operates on an {{mvar|m}}th-degree polynomial such as <math>x^m,</math> one may let {{mvar|n}} go from {{math|0}} only up {{nobr|to {{mvar|m}}.}} An integral representation for the Bernoulli polynomials is given by the [[Nörlund–Rice integral]], which follows from the expression as a finite difference. An explicit formula for the Euler polynomials is given by <math display="block">E_n(x) = \sum_{k=0}^n \left[ \frac{1}{2^k}\sum_{\ell=0}^n (-1)^\ell {k \choose \ell}(x + \ell)^n \right] .</math> The above follows analogously, using the fact that <math display="block">\frac{2}{e^D + 1} = \frac{1}{1 + \tfrac12 \Delta} = \sum_{n = 0}^\infty \bigl( {-\tfrac{1}{2}} \Delta \bigr)^n .</math> ==Sums of ''p''th powers== {{main|Faulhaber's formula}} Using either the above [[#Representation by an integral operator|integral representation]] of <math>x^n</math> or the [[#Differences and derivatives|identity]] <math> B_n(x + 1) - B_n(x) = nx^{n-1}</math>, we have <math display="block">\sum_{k=0}^x k^p = \int_0^{x+1} B_p(t) \, dt = \frac{B_{p+1}(x+1)-B_{p+1}}{p+1} </math> (assuming 0<sup>0</sup> = 1). ==Explicit expressions for low degrees== The first few Bernoulli polynomials are: <math display="block"> \begin{align} B_0(x) & = 1, & B_4(x) & = x^4 - 2x^3 + x^2 - \tfrac{1}{30}, \\[4mu] B_1(x) & = x - \tfrac{1}{2}, & B_5(x) & = x^5 - \tfrac{5}{2}x^4 + \tfrac{5}{3}x^3 - \tfrac{1}{6}x, \\[4mu] B_2(x) & = x^2 - x + \tfrac{1}{6}, & B_6(x) & = x^6 - 3x^5 + \tfrac{5}{2}x^4 - \tfrac{1}{2}x^2 + \tfrac{1}{42}, \\[-2mu] B_3(x) & = x^3 - \tfrac{3}{2}x^2 + \tfrac{1}{2}x \vphantom\Big|, \qquad & &\ \,\, \vdots \end{align} </math> The first few Euler polynomials are: <math display="block"> \begin{align} E_0(x) & = 1, & E_4(x) & = x^4 - 2x^3 + x, \\[4mu] E_1(x) & = x - \tfrac{1}{2}, & E_5(x) & = x^5 - \tfrac{5}{2}x^4 + \tfrac{5}{2}x^2 - \tfrac{1}{2}, \\[4mu] E_2(x) & = x^2 - x, & E_6(x) & = x^6 - 3x^5 + 5x^3 - 3x, \\[-1mu] E_3(x) & = x^3 - \tfrac{3}{2}x^2 + \tfrac{1}{4}, \qquad \ \ & &\ \,\, \vdots \end{align} </math> ==Maximum and minimum== At higher {{mvar|n}} the amount of variation in <math>B_n(x)</math> between <math>x = 0</math> and <math>x = 1</math> gets large. For instance, <math>B_{16}(0) = B_{16}(1) = {}</math><math> -\tfrac{3617}{510} \approx -7.09,</math> but <math>B_{16}\bigl(\tfrac12\bigr) = {}</math><math>\tfrac{118518239}{3342336} \approx 7.09.</math> {{nobr|[[D.H. Lehmer|Lehmer]] (1940)<ref>{{cite journal |first=D.H. |last=Lehmer |author-link=D.H. Lehmer |year=1940 |title=On the maxima and minima of Bernoulli polynomials |journal=[[American Mathematical Monthly]] |volume=47 |issue=8 |pages=533–538 |doi=10.1080/00029890.1940.11991015 }}</ref>}} showed that the maximum value ({{mvar|M{{sub|n}}}}) of <math>B_n(x)</math> between {{math|0}} and {{math|1}} obeys <math display="block">M_n < \frac{2n!}{(2\pi)^n}</math> unless {{mvar|n}} is {{nobr|{{math|2 modulo 4}},}} in which case <math display="block">M_n = \frac{2\zeta (n)\,n!}{(2\pi)^n}</math> (where <math>\zeta(x)</math> is the [[Riemann zeta function]]), while the minimum ({{mvar|m{{sub|n}}}}) obeys <math display="block">m_n > \frac{ -2 n!}{(2\pi)^n}</math> unless {{nobr| {{math|1=''n'' = 0 modulo 4 }} ,}} in which case <math display="block">m_n = \frac{-2 \zeta(n)\,n! }{(2\pi)^n}.</math> These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well. ==Differences and derivatives== The Bernoulli and Euler polynomials obey many relations from [[umbral calculus]]: <math display="block">\begin{align} \Delta B_n(x) &= B_n(x+1)-B_n(x)=nx^{n-1}, \\[3mu] \Delta E_n(x) &= E_n(x+1)-E_n(x)=2(x^n-E_n(x)). \end{align}</math> ({{math|Δ}} is the [[forward difference operator]]). Also, <math display="block"> E_n(x+1) + E_n(x) = 2x^n.</math> These [[polynomial sequence]]s are [[Appell sequence]]s: <math display="block">\begin{align} B_n'(x) &= n B_{n-1}(x), \\[3mu] E_n'(x) &= n E_{n-1}(x). \end{align}</math> ===Translations=== <math display="block">\begin{align} B_n(x+y) &= \sum_{k=0}^n {n \choose k} B_k(x) y^{n-k} \\[3mu] E_n(x+y) &= \sum_{k=0}^n {n \choose k} E_k(x) y^{n-k} \end{align}</math> These identities are also equivalent to saying that these polynomial sequences are [[Appell sequence]]s. ([[Hermite polynomials]] are another example.) ===Symmetries=== <math display="block">\begin{align} B_n(1-x) &= \left(-1\right)^n B_n(x), && n \ge 0, \text{ and in particular for } n \ne 1,~B_n(0) = B_n(1)\\[3mu] E_n(1-x) &= \left(-1\right)^n E_n(x) \\[1ex] \left(-1\right)^n B_n(-x) &= B_n(x) + nx^{n-1} \\[3mu] \left(-1\right)^n E_n(-x) &= -E_n(x) + 2x^n \\[1ex] B_n\bigl(\tfrac12\bigr) &= \left(\frac{1}{2^{n-1}}-1\right) B_n, && n \geq 0\text{ from the multiplication theorems below.} \end{align} </math> [[Zhi-Wei Sun]] and Hao Pan <ref>{{cite journal |author1=Zhi-Wei Sun |author2=Hao Pan |journal=Acta Arithmetica |volume=125 |year=2006 |pages=21–39 |title=Identities concerning Bernoulli and Euler polynomials |issue=1 |arxiv=math/0409035 |doi=10.4064/aa125-1-3|bibcode=2006AcAri.125...21S |s2cid=10841415 }}</ref> established the following surprising symmetry relation: If {{math|1= ''r'' + ''s'' + ''t'' = ''n''}} and {{math|1= ''x'' + ''y'' + ''z'' = 1}}, then <math display="block">r[s,t;x,y]_n+s[t,r;y,z]_n+t[r,s;z,x]_n=0,</math> where <math display="block">[s,t;x,y]_n=\sum_{k=0}^n(-1)^k{s \choose k}{t\choose {n-k}} B_{n-k}(x)B_k(y).</math> ==Fourier series== The [[Fourier series]] of the Bernoulli polynomials is also a [[Dirichlet series]], given by the expansion <math display="block">B_n(x) = -\frac{n!}{(2\pi i)^n}\sum_{k\not=0 }\frac{e^{2\pi ikx}}{k^n}= -2 n! \sum_{k=1}^{\infty} \frac{\cos\left(2 k \pi x- \frac{n \pi} 2 \right)}{(2 k \pi)^n}.</math> Note the simple large ''n'' limit to suitably scaled trigonometric functions. This is a special case of the analogous form for the [[Hurwitz zeta function]] <math display="block">B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty \frac{ \exp (2\pi ikx) + e^{i\pi n} \exp (2\pi ik(1-x)) } { (2\pi ik)^n }. </math> This expansion is valid only for {{math|0 ≤ ''x'' ≤ 1}} when {{math|''n'' ≥ 2}} and is valid for {{math|0 < ''x'' < 1}} when {{math|1=''n'' = 1}}. The Fourier series of the Euler polynomials may also be calculated. Defining the functions <math display="block">\begin{align} C_\nu(x) &= \sum_{k=0}^\infty \frac {\cos((2k+1)\pi x)} {(2k+1)^\nu} \\[3mu] S_\nu(x) &= \sum_{k=0}^\infty \frac {\sin((2k+1)\pi x)} {(2k+1)^\nu} \end{align}</math> for <math>\nu > 1</math>, the Euler polynomial has the Fourier series <math display="block">\begin{align} C_{2n}(x) &= \frac{\left(-1\right)^n}{4(2n-1)!} \pi^{2n} E_{2n-1} (x) \\[1ex] S_{2n+1}(x) &= \frac{\left(-1\right)^n}{4(2n)!} \pi^{2n+1} E_{2n} (x). \end{align}</math> Note that the <math>C_\nu</math> and <math>S_\nu</math> are odd and even, respectively:<math display="block">\begin{align} C_\nu(x) &= -C_\nu(1-x) \\ S_\nu(x) &= S_\nu(1-x). \end{align}</math> They are related to the [[Legendre chi function]] <math>\chi_\nu</math> as <math display="block">\begin{align} C_\nu(x) &= \operatorname{Re} \chi_\nu (e^{ix}) \\ S_\nu(x) &= \operatorname{Im} \chi_\nu (e^{ix}). \end{align}</math> ==Inversion== The Bernoulli and Euler polynomials may be inverted to express the [[monomial]] in terms of the polynomials. Specifically, evidently from the above section on [[#Representation by an integral operator|integral operators]], it follows that <math display="block">x^n = \frac {1}{n+1} \sum_{k=0}^n {n+1 \choose k} B_k (x)</math> and <math display="block">x^n = E_n (x) + \frac {1}{2} \sum_{k=0}^{n-1} {n \choose k} E_k (x).</math> ==Relation to falling factorial== The Bernoulli polynomials may be expanded in terms of the [[falling factorial]] <math>(x)_k</math> as <math display="block">B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n \frac{n+1}{k+1} \left\{ \begin{matrix} n \\ k \end{matrix} \right\} (x)_{k+1} </math> where <math>B_n = B_n(0)</math> and <math display="block">\left\{ \begin{matrix} n \\ k \end{matrix} \right\} = S(n,k)</math> denotes the [[Stirling number of the second kind]]. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials: <math display="block">(x)_{n+1} = \sum_{k=0}^n \frac{n+1}{k+1} \left[ \begin{matrix} n \\ k \end{matrix} \right] \left(B_{k+1}(x) - B_{k+1} \right) </math> where <math display="block">\left[ \begin{matrix} n \\ k \end{matrix} \right] = s(n,k)</math> denotes the [[Stirling number of the first kind]]. ==Multiplication theorems== The [[multiplication theorem]]s were given by [[Joseph Ludwig Raabe]] in 1851: For a natural number {{math|''m''≥1}}, <math display="block">B_n(mx)= m^{n-1} \sum_{k=0}^{m-1} B_n{\left(x+\frac{k}{m}\right)}</math> <math display="block">\begin{align} E_n(mx) &= m^n \sum_{k=0}^{m-1} \left(-1\right)^k E_n{\left(x+\frac{k}{m}\right)} & \text{ for odd } m \\[1ex] E_n(mx) &= \frac{-2}{n+1} m^n \sum_{k=0}^{m-1} \left(-1\right)^k B_{n+1}{\left(x+\frac{k}{m}\right)} & \text{ for even } m \end{align}</math> ==Integrals== Two definite integrals relating the Bernoulli and Euler polynomials to the Bernoulli and Euler numbers are:<ref>{{cite journal |name-list-style=amp |author1=Takashi Agoh |author2=Karl Dilcher |journal=Journal of Mathematical Analysis and Applications |volume=381 |year=2011 |pages=10–16 |title=Integrals of products of Bernoulli polynomials | doi=10.1016/j.jmaa.2011.03.061 |doi-access=free }}</ref> *<math>\int_0^1 B_n(t) B_m(t)\,dt = (-1)^{n-1} \frac{m!\, n!}{(m+n)!} B_{n+m} \quad \text{for } m,n \geq 1 </math> *<math>\int_0^1 E_n(t) E_m(t)\,dt = (-1)^{n} 4 (2^{m+n+2}-1)\frac{m!\,n!}{(m+n+2)!} B_{n+m+2}</math> Another integral formula states<ref>{{cite journal | author=Elaissaoui, Lahoucine | author2=Guennoun, Zine El Abidine | name-list-style=amp | title=Evaluation of log-tangent integrals by series involving ζ(2n+1)| journal=Integral Transforms and Special Functions | language=English | year=2017| volume=28 | issue=6 | pages=460–475 | doi=10.1080/10652469.2017.1312366 | arxiv=1611.01274 | s2cid=119132354 }}</ref> *<math>\int_0^{1}E_{n}\left( x +y\right)\log(\tan \frac{\pi}{2}x)\,dx= n! \sum_{k=1}^{\left\lfloor\frac {n+1}2\right\rfloor} \frac{(-1)^{k-1}}{ \pi^{2k}} \left( 2-2^{-2k} \right)\zeta(2k+1) \frac{y^ {n+1-2k}}{(n +1- 2k)!}</math> with the special case for <math>y=0</math> *<math>\int_0^{1}E_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}(2n-1)!}{\pi^{2n}}\left( 2-2^{-2n} \right)\zeta(2n+1)</math> *<math>\int_0^{1}B_{2n-1}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx= \frac{(-1)^{n-1}}{\pi^{2n}}\frac{2^{2n-2}}{(2n-1)!}\sum_{k=1}^{n}( 2^{2k+1}-1 )\zeta(2k+1)\zeta(2n-2k)</math> *<math>\int_0^{1}E_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=\int_0^{1}B_{2n}\left( x \right)\log(\tan \frac{\pi}{2}x)\,dx=0</math> *<math>\int_{0}^{1}{{{B}_{2n-1}}\left( x \right)\cot \left( \pi x \right)dx}=\frac{2\left( 2n-1 \right)!}{{{\left( -1 \right)}^{n-1}}{{\left( 2\pi \right)}^{2n-1}}}\zeta \left( 2n-1 \right)</math> ==Periodic Bernoulli polynomials== A '''periodic Bernoulli polynomial''' {{math|''P''<sub>''n''</sub>(''x'')}} is a Bernoulli polynomial evaluated at the [[fractional part]] of the argument {{math|''x''}}. These functions are used to provide the [[remainder term]] in the [[Euler–Maclaurin formula]] relating sums to integrals. The first polynomial is a [[Sawtooth wave|sawtooth function]]. Strictly these functions are not polynomials at all and more properly should be termed the periodic Bernoulli functions, and {{math|''P''<sub>0</sub>(''x'')}} is not even a function, being the derivative of a sawtooth and so a [[Dirac comb]]. The following properties are of interest, valid for all <math> x </math>: * <math>P_k(x)</math> is continuous for all <math> k > 1 </math> * <math>P_k'(x)</math> exists and is continuous for <math> k > 2 </math> * <math>P'_k(x) = k P_{k-1}(x)</math> for <math> k > 2 </math> ==See also== * [[Bernoulli numbers]] * [[Bernoulli polynomials of the second kind]] * [[Stirling polynomial]] * [[Polynomials calculating sums of powers of arithmetic progressions]] ==References== {{reflist}} {{refbegin}} * Milton Abramowitz and Irene A. Stegun, eds. ''[[Abramowitz and Stegun|Handbook of Mathematical Functions]] with Formulas, Graphs, and Mathematical Tables'', (1972) Dover, New York. ''(See Chapter 23)'' * {{Apostol IANT}} ''(See chapter 12.11)'' *{{dlmf|first=K. |last=Dilcher|id=24|title=Bernoulli and Euler Polynomials}} * {{Cite journal | last1 = Cvijović | first1 = Djurdje | last2 = Klinowski | first2 = Jacek | year = 1995 | title = New formulae for the Bernoulli and Euler polynomials at rational arguments | journal = [[Proceedings of the American Mathematical Society]] | volume = 123 | issue = 5 | pages = 1527–1535 | doi=10.1090/S0002-9939-1995-1283544-0 | doi-access = free | jstor = 2161144 }} * {{Cite journal | doi = 10.1007/s11139-007-9102-0 | last1 = Guillera | first1 = Jesus | last2 = Sondow | first2 = Jonathan | year = 2008 | title = Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent | arxiv = math.NT/0506319 | journal = The Ramanujan Journal | volume = 16 | issue = 3| pages = 247–270 | s2cid = 14910435 }} ''(Reviews relationship to the Hurwitz zeta function and Lerch transcendent.)'' * {{cite book | author=Hugh L. Montgomery | author-link=Hugh Montgomery (mathematician) |author2=Robert C. Vaughan |author-link2=Robert Charles Vaughan (mathematician) | title=Multiplicative number theory I. Classical theory | series=Cambridge tracts in advanced mathematics | volume=97 | year=2007 | isbn=978-0-521-84903-6 | pages=495–519 | publisher=Cambridge Univ. Press | location=Cambridge }} {{refend}} ==External links== * [https://dlmf.nist.gov/24.7 A list of integral identities involving Bernoulli polynomials] from [[NIST]] {{authority control}} [[Category:Special functions]] [[Category:Number theory]] [[Category:Polynomials]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Apostol IANT
(
edit
)
Template:Authority control
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Dlmf
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:Mvar
(
edit
)
Template:Nobr
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Use American English
(
edit
)