Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta function
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical function}} {{About|the Euler beta function}} [[File:Beta function.svg|thumb|[[Contour plot]] of the beta function]] In [[mathematics]], the '''beta function''', also called the [[Euler integral (disambiguation)|Euler integral]] of the first kind, is a [[special function]] that is closely related to the [[gamma function]] and to [[binomial coefficient]]s. It is defined by the [[integral]] :<math> \Beta(z_1,z_2) = \int_0^1 t^{z_1-1}(1-t)^{z_2-1}\,dt</math> for [[complex number]] inputs <math> z_1, z_2 </math> such that <math> \operatorname{Re}(z_1), \operatorname{Re}(z_2)>0</math>. The beta function was studied by [[Leonhard Euler]] and [[Adrien-Marie Legendre]] and was given its name by [[Jacques Philippe Marie Binet|Jacques Binet]]; its symbol {{math|Β}} is a [[Greek alphabet|Greek]] capital [[Beta (letter)|beta]]. == Properties == The beta function is [[symmetric function|symmetric]], meaning that <math> \Beta(z_1,z_2) = \Beta(z_2,z_1)</math> for all inputs <math>z_1</math> and <math>z_2</math>.<ref name=Davis622>{{citation | last = Davis | first = Philip J. | title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | chapter = 6. Gamma function and related functions | editor1-last = Abramowitz | editor1-first = Milton | editor1-link = Milton Abramowitz | editor2-last = Stegun | editor2-first = Irene A. | editor2-link = Irene Stegun | publisher = [[Dover Publications]] | location = New York | isbn = 978-0-486-61272-0 | year = 1972 | url = https://archive.org/details/handbookofmathe000abra/page/258/mode/2up?view=theater | page = 258 }}. Specifically, see 6.2 Beta Function.</ref> A key property of the beta function is its close relationship to the [[gamma function]]:<ref name=Davis622/> :<math> \Beta(z_1,z_2)=\frac{\Gamma(z_1)\,\Gamma(z_2)}{\Gamma(z_1+z_2)}</math> A proof is given below in {{slink||Relationship to the gamma function}}. The beta function is also closely related to [[binomial coefficient]]s. When {{mvar|m}} (or {{mvar|n}}, by symmetry) is a positive integer, it follows from the definition of the gamma function {{math|Γ}} that<ref name=Davis622/> :<math> \Beta(m,n) =\frac{(m-1)!\,(n-1)!}{(m+n-1)!} = \frac{m + n}{mn} \Bigg/ \binom{m + n}{m} </math> == Relationship to the gamma function == To derive this relation, write the product of two factorials as integrals. Since they are integrals in two separate variables, we can combine them into an iterated integral: :<math>\begin{align} \Gamma(z_1)\Gamma(z_2) &= \int_{u=0}^\infty\ e^{-u} u^{z_1-1}\,du \cdot\int_{v=0}^\infty\ e^{-v} v^{z_2-1}\,dv \\[6pt] &=\int_{v=0}^\infty\int_{u=0}^\infty\ e^{-u-v} u^{z_1-1}v^{z_2-1}\, du \,dv. \end{align}</math> Changing variables by {{math|''u'' {{=}} ''st''}} and {{math|''v'' {{=}} ''s''(1 − ''t'')}}, because {{math|''u + v'' {{=}} ''s''}} and {{math| ''u'' / ''(u+v)'' {{=}} ''t''}}, we have that the limits of integrations for {{math| ''s''}} are 0 to ∞ and the limits of integration for {{math| ''t''}} are 0 to 1. Thus produces :<math>\begin{align} \Gamma(z_1)\Gamma(z_2) &= \int_{s=0}^\infty\int_{t=0}^1 e^{-s} (st)^{z_1-1}(s(1-t))^{z_2-1}s\,dt \,ds \\[6pt] &= \int_{s=0}^\infty e^{-s}s^{z_1+z_2-1} \,ds\cdot\int_{t=0}^1 t^{z_1-1}(1-t)^{z_2-1}\,dt\\ &=\Gamma(z_1+z_2) \cdot \Beta(z_1,z_2). \end{align}</math> Dividing both sides by <math>\Gamma(z_1+z_2)</math> gives the desired result. The stated identity may be seen as a particular case of the identity for the [[convolution#Integration|integral of a convolution]]. Taking :<math>\begin{align}f(u)&:=e^{-u} u^{z_1-1} 1_{\R_+} \\ g(u)&:=e^{-u} u^{z_2-1} 1_{\R_+}, \end{align}</math> one has: :<math> \Gamma(z_1) \Gamma(z_2) = \int_{\R}f(u)\,du\cdot \int_{\R} g(u) \,du = \int_{\R}(f*g)(u)\,du =\Beta(z_1,z_2)\,\Gamma(z_1+z_2).</math> See ''The Gamma Function'', page 18–19<ref>{{citation|last1=Artin|first1=Emil|title=The Gamma Function|pages=18–19|url=http://www.plouffe.fr/simon/math/Artin%20E.%20The%20Gamma%20Function%20(1931)(23s).pdf|access-date=2016-11-11|archive-url=https://web.archive.org/web/20161112081854/http://www.plouffe.fr/simon/math/Artin%20E.%20The%20Gamma%20Function%20(1931)(23s).pdf|archive-date=2016-11-12|url-status=dead}}</ref> for a derivation of this relation. == Differentiation of the beta function == We have :<math>\frac{\partial}{\partial z_1} \mathrm{B}(z_1, z_2) = \mathrm{B}(z_1, z_2) \left( \frac{\Gamma'(z_1)}{\Gamma(z_1)} - \frac{\Gamma'(z_1 + z_2)}{\Gamma(z_1 + z_2)} \right) = \mathrm{B}(z_1, z_2) \big(\psi(z_1) - \psi(z_1 + z_2)\big),</math> :<math>\frac{\partial}{\partial z_m} \mathrm{B}(z_1, z_2, \dots, z_n) = \mathrm{B}(z_1, z_2, \dots, z_n) \left(\psi(z_m) - \psi\left( \sum_{k=1}^n z_k \right)\right), \quad 1\le m\le n,</math> where <math>\psi(z)</math> denotes the [[digamma function]]. ==Approximation== [[Stirling's approximation]] gives the asymptotic formula :<math>\Beta(x,y) \sim \sqrt {2\pi } \frac{x^{x - 1/2} y^{y - 1/2} }{( {x + y} )^{x + y - 1/2} }</math> for large {{mvar|x}} and large {{mvar|y}}. If on the other hand {{mvar|x}} is large and {{mvar|y}} is fixed, then :<math>\Beta(x,y) \sim \Gamma(y)\,x^{-y}.</math> == Other identities and formulas == The integral defining the beta function may be rewritten in a variety of ways, including the following: :<math> \begin{align} \Beta(z_1,z_2) &= 2\int_0^{\pi / 2}(\sin\theta)^{2z_1-1}(\cos\theta)^{2z_2-1}\,d\theta, \\[6pt] &= \int_0^\infty\frac{t^{z_1-1}}{(1+t)^{z_1+z_2}}\,dt, \\[6pt] &= n\int_0^1t^{nz_1-1}(1-t^n)^{z_2-1}\,dt, \\ &= (1-a)^{z_2} \int_0^1 \frac{(1-t)^{z_1-1}t^{z_2-1}}{(1-at)^{z_1+z_2}}dt \qquad \text{for any } a\in\mathbb{R}_{\leq 1}, \end{align}</math> where in the second-to-last identity {{mvar|n}} is any positive real number. One may move from the first integral to the second one by substituting <math>t = \tan^2(\theta)</math>. For values <math>z=z_1=z_2\neq1</math> we have: :<math> \Beta(z,z) = \frac{1}{z}\int_0^{\pi / 2}\frac{1}{(\sqrt[z]{\sin\theta} + \sqrt[z]{\cos\theta})^{2z}}\,d\theta </math> The beta function can be written as an infinite sum<ref>{{citation|url=https://functions.wolfram.com/GammaBetaErf/Beta/06/03/0001/|title = Beta function : Series representations (Formula 06.18.06.0007)}}</ref> : <math>\Beta(x,y) = \sum_{n=0}^\infty \frac{(1-x)_n}{(y+n)\,n!}</math> If <math>x</math> and <math>y</math> are equal to a number <math>z</math> we get: :<math> \Beta(z,z) = 2\sum_{n=0}^\infty \frac{(2z+n-1)_n (-1)^n}{(z+n)n!} = \lim_{x \to 1^-}2\sum_{n=0}^\infty \frac{(-2z)_n x^n}{(z+n)n!} </math> : (where <math>(x)_n</math> is the [[falling and rising factorials|rising factorial]]) and as an infinite product : <math>\Beta(x,y) = \frac{x+y}{x y} \prod_{n=1}^\infty \left( 1+ \dfrac{x y}{n (x+y+n)}\right)^{-1}.</math> The beta function satisfies several identities analogous to corresponding identities for binomial coefficients, including a version of [[Pascal's identity]] :<math> \Beta(x,y) = \Beta(x, y+1) + \Beta(x+1, y)</math> and a simple recurrence on one coordinate: :<math>\Beta(x+1,y) = \Beta(x, y) \cdot \dfrac{x}{x+y}, \quad \Beta(x,y+1) = \Beta(x, y) \cdot \dfrac{y}{x+y}.</math><ref>{{citation|last=Mäklin|first=Tommi|year=2022|title=Probabilistic Methods for High-Resolution Metagenomics|publisher=Unigrafia|location=Helsinki|pages=27|series=Series of publications A / Department of Computer Science, University of Helsinki|issn=2814-4031|isbn=978-951-51-8695-9|url=https://helda.helsinki.fi/bitstream/handle/10138/349862/M%C3%A4klin_Tommi_dissertation_2022.pdf}}</ref> The positive integer values of the beta function are also the partial derivatives of a 2D function: for all nonnegative integers <math>m</math> and <math>n</math>, :<math>\Beta(m+1, n+1) = \frac{\partial^{m+n}h}{\partial a^m \, \partial b^n}(0, 0),</math> where :<math>h(a, b) = \frac{e^a-e^b}{a-b}.</math> The Pascal-like identity above implies that this function is a solution to the [[first-order partial differential equation]] :<math>h = h_a+h_b.</math> For <math>x, y \geq 1</math>, the beta function may be written in terms of a [[convolution]] involving the [[truncated power function]] <math>t \mapsto t_+^x</math>: :<math> \Beta(x,y) \cdot\left(t \mapsto t_+^{x+y-1}\right) = \Big(t \mapsto t_+^{x-1}\Big) * \Big(t \mapsto t_+^{y-1}\Big)</math> Evaluations at particular points may simplify significantly; for example, :<math> \Beta(1,x) = \dfrac{1}{x} </math> and :<math> \Beta(x,1-x) = \dfrac{\pi}{\sin(\pi x)}, \qquad x \not \in \mathbb{Z} </math><ref>{{citation|title=Euler's Reflection Formula - ProofWiki|url=https://proofwiki.org/wiki/Euler%27s_Reflection_Formula|access-date=2020-09-02|website=proofwiki.org}}</ref> By taking <math> x = \frac{1}{2}</math> in this last formula, it follows that <math>\Gamma(1/2) = \sqrt{\pi}</math>. Generalizing this into a bivariate identity for a product of beta functions leads to: :<math> \Beta(x,y) \cdot \Beta(x+y,1-y) = \frac{\pi}{x \sin(\pi y)} .</math> Euler's integral for the beta function may be converted into an integral over the [[Pochhammer contour]] {{mvar|C}} as :<math>\left(1-e^{2\pi i\alpha}\right)\left(1-e^{2\pi i\beta}\right)\Beta(\alpha,\beta) =\int_C t^{\alpha-1}(1-t)^{\beta-1} \, dt.</math> This Pochhammer contour integral converges for all values of {{mvar|α}} and {{mvar|β}} and so gives the [[analytic continuation]] of the beta function. Just as the gamma function for integers describes [[factorial]]s, the beta function can define a [[binomial coefficient]] after adjusting indices: :<math>\binom{n}{k} = \frac{1}{(n+1)\,\Beta(n-k+1, k+1)}.</math> Moreover, for integer {{mvar|n}}, {{math|Β}} can be factored to give a closed form interpolation function for continuous values of {{mvar|k}}: :<math>\binom{n}{k} = (-1)^n\, n! \cdot\frac{\sin (\pi k)}{\pi \displaystyle\prod_{i=0}^n (k-i)}.</math> ==Reciprocal beta function== The '''reciprocal beta function''' is the [[special function|function]] about the form :<math>f(x,y)=\frac{1}{\Beta(x,y)}</math> Interestingly, their integral representations closely relate as the [[definite integral]] of [[trigonometric functions]] with product of its power and [[List of trigonometric identities#Multiple-angle formulae|multiple-angle]]:<ref>{{dlmf|id=5.12|title=Beta Function|first=R. B. |last=Paris}}</ref> :<math>\int_0^\pi\sin^{x-1}\theta\sin y\theta~d\theta=\frac{\pi\sin\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math> :<math>\int_0^\pi\sin^{x-1}\theta\cos y\theta~d\theta=\frac{\pi\cos\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math> :<math>\int_0^\pi\cos^{x-1}\theta\sin y\theta~d\theta=\frac{\pi\cos\frac{y\pi}{2}}{2^{x-1}x\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math> :<math>\int_0^\frac{\pi}{2}\cos^{x-1}\theta\cos y\theta~d\theta=\frac{\pi}{2^xx\Beta\left(\frac{x+y+1}{2},\frac{x-y+1}{2}\right)}</math> ==Incomplete beta function== The '''incomplete beta function''', a generalization of the beta function, is defined as<ref>{{citation | last1 = Zelen | first1 = M. | last2 = Severo | first2 = N. C. | editor1-last = Abramowitz | editor1-first = Milton | editor1-link = Milton Abramowitz | editor2-last = Stegun | editor2-first = Irene A. | editor2-link = Irene Stegun | year = 1972 | title = [[Abramowitz and Stegun|Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables]] | chapter = 26. Probability functions | pages = [https://archive.org/details/handbookofmathe000abra/page/944 944] | publisher = [[Dover Publications]] | location = New York | isbn = 978-0-486-61272-0}}</ref><ref name="paris-ibf">{{dlmf|mode=cs2 | last = Paris | first = R. B. | id = 8.17 | title = Incomplete beta functions}}</ref> :<math> \Beta(x;\,a,b) = \int_0^x t^{a-1}\,(1-t)^{b-1}\,dt. </math> For {{math|''x'' {{=}} 1}}, the incomplete beta function coincides with the complete beta function. For positive integers ''a'' and ''b'', the incomplete beta function will be a polynomial of degree ''a'' + ''b'' - 1 with rational coefficients. By the substitution <math>t = \sin^2\theta</math> and <math>t = \frac1{1+s}</math>, we can show that :<math>\Beta(x;\,a,b) = 2 \int_0^{\arcsin \sqrt x} \sin^{2a-1\!}\theta\cos^{2b-1\!}\theta\,\mathrm d\theta = \int_{\frac{1-x}x}^\infty \frac{s^{b-1}}{(1+s)^{a+b}}\,\mathrm ds</math> The '''regularized incomplete beta function''' (or '''regularized beta function''' for short) is defined in terms of the incomplete beta function and the complete beta function: :<math> I_x(a,b) = \frac{\Beta(x;\,a,b)}{\Beta(a,b)}. </math> The regularized incomplete beta function is the [[cumulative distribution function]] of the [[beta distribution]], and is related to the [[cumulative distribution function]] <math>F(k;\,n,p)</math> of a [[random variable]] {{mvar|X}} following a [[binomial distribution]] with probability of single success {{mvar|p}} and number of Bernoulli trials {{mvar|n}}: :<math>F(k;\,n,p) = \Pr\left(X \le k\right) = I_{1-p}(n-k, k+1) = 1 - I_p(k+1,n-k). </math> ===Properties=== <!-- (Many other properties could be listed here.)--> :<math>\begin{align} I_0(a,b) &= 0 \\ I_1(a,b) &= 1 \\ I_x(a,1) &= x^a\\ I_x(1,b) &= 1 - (1-x)^b \\ I_x(a,b) &= 1 - I_{1-x}(b,a) \\ I_x(a+1,b) &= I_x(a,b)-\frac{x^a(1-x)^b}{a \Beta(a,b)} \\ I_x(a,b+1) &= I_x(a,b)+\frac{x^a(1-x)^b}{b \Beta(a,b)} \\ \int \Beta(x;a,b) \mathrm{d}x &= x \Beta(x; a, b) - \Beta(x; a+1, b) \\ \Beta(x;a,b)&=(-1)^{a} \Beta\left(\frac{x}{x-1};a,1-a-b\right) \end{align}</math> ===Continued fraction expansion=== The [[generalized continued fraction|continued fraction]] expansion :<math>\Beta(x;\,a,b) = \frac{x^{a} (1 - x)^{b}}{a \left( 1 + \frac{{d}_{1}}{1 +} \frac{{d}_{2}}{1 +} \frac{{d}_{3}}{1 +} \frac{{d}_{4}}{1 +} \cdots \right)}</math> with odd and even coefficients respectively :<math>{d}_{2 m + 1} = - \frac{(a + m) (a + b + m) x}{(a + 2 m) (a + 2 m + 1)}</math> :<math>{d}_{2 m} = \frac{m (b - m) x}{(a + 2 m - 1) (a + 2 m)}</math> converges rapidly when <math>x</math> is not close to 1. The <math>4 m</math> and <math>4 m + 1</math> convergents are less than <math>\Beta(x;\,a,b)</math>, while the <math>4 m + 2</math> and <math>4 m + 3</math> convergents are greater than <math>\Beta(x;\,a,b)</math>. For <math>x > \frac{a + 1}{a + b + 2}</math>, the function may be evaluated more efficiently using <math>\Beta(x;\,a,b) = \Beta(a, b) - \Beta(1 - x;\,b,a)</math>.<ref name="paris-ibf"/> ==Multivariate beta function== The beta function can be extended to a function with more than two arguments: :<math>\Beta(\alpha_1,\alpha_2,\ldots\alpha_n) = \frac{\Gamma(\alpha_1)\,\Gamma(\alpha_2) \cdots \Gamma(\alpha_n)}{\Gamma(\alpha_1 + \alpha_2 + \cdots + \alpha_n)} .</math> This multivariate beta function is used in the definition of the [[Dirichlet distribution]]. Its relationship to the beta function is analogous to the relationship between [[multinomial coefficient]]s and binomial coefficients. For example, it satisfies a similar version of Pascal's identity: :<math>\Beta(\alpha_1,\alpha_2,\ldots\alpha_n) = \Beta(\alpha_1+1,\alpha_2,\ldots\alpha_n)+\Beta(\alpha_1,\alpha_2+1,\ldots\alpha_n)+\cdots+\Beta(\alpha_1,\alpha_2,\ldots\alpha_n+1) .</math> == Applications == The beta function is useful in computing and representing the [[scattering amplitude]] for [[Regge trajectories]]. Furthermore, it was the first known [[S matrix|scattering amplitude]] in [[string theory]], first [[Veneziano amplitude|conjectured]] by [[Gabriele Veneziano]]. It also occurs in the theory of the [[preferential attachment]] process, a type of stochastic [[urn problem|urn process]]. The beta function is also important in statistics, e.g. for the [[beta distribution]] and [[beta prime distribution]]. As briefly alluded to previously, the beta function is closely tied with the [[gamma function]] and plays an important role in [[calculus]]. ==Software implementation== Even if unavailable directly, the complete and incomplete beta function values can be calculated using functions commonly included in [[spreadsheet]] or [[computer algebra system]]s. In [[Microsoft Excel]], for example, the complete beta function can be computed with the <code>[[Gamma_function#Log-gamma function|GammaLn]]</code> function (or <code>special.gammaln</code> in [[Python (programming language)|Python's]] [[SciPy]] package): :<code>Value = Exp(GammaLn(a) + GammaLn(b) − GammaLn(a + b))</code> This result follows from the properties [[#Properties|listed above]]. The incomplete beta function cannot be directly computed using such relations and other methods must be used. In [https://www.gnu.org/software/gsl/doc/html/specfunc.html#incomplete-beta-function GNU Octave], it is computed using a [[continued fraction]] expansion. The incomplete beta function has existing implementation in common languages. For instance, <code>betainc</code> (incomplete beta function) in [[MATLAB]] and [[GNU Octave]], <code>pbeta</code> (probability of beta distribution) in [[R (programming language)|R]] and <code>betainc</code> in [[SymPy]]. In [[SciPy]], <code>special.betainc</code> computes the [[Beta distribution#Cumulative distribution function|regularized incomplete beta function]]—which is, in fact, the cumulative beta distribution. To get the actual incomplete beta function, one can multiply the result of <code>special.betainc</code> by the result returned by the corresponding <code>beta</code> function. In [[Mathematica]], <code>Beta[x, a, b]</code> and <code>BetaRegularized[x, a, b]</code> give <math> \Beta(x;\,a,b) </math> and <math> I_x(a,b) </math>, respectively. ==See also== * [[Beta distribution]] and [[Beta prime distribution]], two probability distributions related to the beta function * [[Jacobi sum]], the analogue of the beta function over [[finite field]]s. * [[Nørlund–Rice integral]] * [[Yule–Simon distribution]] {{More footnotes|date=November 2010}} ==References== {{reflist}} * {{dlmf|mode=cs2|authorlink=Richard Askey|first=R. A.|last= Askey|first2= R.|last2= Roy |id=5.12 }} * {{Citation | last1=Press | first1=W. H. | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press | publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 6.1 Gamma Function, Beta Function, Factorials | chapter-url=http://apps.nrbook.com/empanel/index.html?pg=256 | access-date=2011-08-09 | archive-date=2021-10-27 | archive-url=https://web.archive.org/web/20211027043154/http://apps.nrbook.com/empanel/index.html?pg=256 | url-status=dead }} ==External links== * {{springer|title=Beta-function|id=p/b015960}} * {{planetmath|evaluationofbetafunctionusinglaplacetransform|title=Evaluation of beta function using Laplace transform}} * Arbitrarily accurate values can be obtained from: ** [http://functions.wolfram.com The Wolfram functions site]: [http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=BetaRegularized Evaluate Beta Regularized incomplete beta] **danielsoper.com: [https://web.archive.org/web/20070120151547/http://www.danielsoper.com/statcalc/calc36.aspx Incomplete beta function calculator], [https://web.archive.org/web/20070120151557/http://www.danielsoper.com/statcalc/calc37.aspx Regularized incomplete beta function calculator] {{Authority control}} [[Category:Gamma and related functions]] [[Category:Special hypergeometric functions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:About
(
edit
)
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Dlmf
(
edit
)
Template:Math
(
edit
)
Template:More footnotes
(
edit
)
Template:Mvar
(
edit
)
Template:Planetmath
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Slink
(
edit
)
Template:Springer
(
edit
)