Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beth number
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Infinite Cardinal number}} In [[mathematics]], particularly in [[set theory]], the '''beth numbers''' are a certain sequence of [[infinite set|infinite]] [[cardinal number]]s (also known as [[transfinite number]]s), conventionally written <math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math>, where <math>\beth</math> is the [[Hebrew alphabet|Hebrew letter]] [[bet (letter)|beth]]. The beth numbers are related to the [[aleph number]]s (<math>\aleph_0, \aleph_1, \dots</math>), but unless the [[generalized continuum hypothesis]] is true, there are numbers indexed by <math>\aleph</math> that are not indexed by <math>\beth</math> or <math>\gimel</math>. See: [[Gimel function]] == Definition == Beth numbers are defined by [[transfinite recursion]]: * <math>\beth_0 = \aleph_0,</math> * <math>\beth_{\alpha+1} = 2^{\beth_\alpha},</math> * <math>\beth_\lambda = \sup\Bigl\{ \beth_\alpha : \alpha < \lambda \Bigr\},</math> where <math>\alpha</math> is an ordinal and <math>\lambda</math> is a [[limit ordinal]].<ref>{{cite book |last=Jech |first=Thomas |year=2002 |title=Set Theory |edition=3rd |quote = Millennium ed, rev. and expanded. Corrected 4th printing 2006. |location= |publisher=Springer |page=55 |isbn=978-3-540-44085-7 }}</ref> The cardinal <math>\beth_0 = \aleph_0</math> is the cardinality of any [[countably infinite]] [[set (mathematics)|set]] such as the set <math>\mathbb{N}</math> of [[natural number]]s, so that <math>\beth_0 = |\mathbb{N}|</math>. Let <math>\alpha</math> be an [[ordinal number|ordinal]], and <math>A_\alpha</math> be a set with cardinality <math>\beth_\alpha = |A_\alpha|</math>. Then, * <math>\mathcal{P}(A_\alpha)</math> denotes the [[power set]] of <math>A_\alpha</math> (i.e., the set of all subsets of <math>A_\alpha</math>), * the set <math>2^{A_\alpha} \subset \mathcal{P}(A_\alpha \times 2)</math> denotes the set of all functions from <math>A_\alpha</math> to <math>\{0, 1\}</math>, * the cardinal <math>2^{\beth_\alpha}</math> is the result of [[cardinal exponentiation]], and * <math>\beth_{\alpha+1} = 2^{\beth_\alpha} = \left| 2^{A_\alpha} \right| = |\mathcal{P}(A_\alpha)|</math> is the cardinality of the power set of <math>A_\alpha</math>. Given this definition, :<math>\beth_0, \beth_1, \beth_2, \beth_3, \dots</math> are respectively the cardinalities of :<math>\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots</math> so that the second beth number <math>\beth_1</math> is equal to <math>\mathfrak{c}</math>, the [[cardinality of the continuum]] (the cardinality of the set of the [[real number]]s), and the third beth number <math>\beth_2</math> is the cardinality of the power set of the continuum. Because of [[Cantor's theorem]], each set in the preceding sequence has cardinality strictly greater than the one preceding it. For infinite [[limit ordinal]]s <math>\lambda</math>, the corresponding beth number is defined to be the [[supremum]] of the beth numbers for all ordinals strictly smaller than <math>\lambda</math>: :<math>\beth_\lambda = \sup \Bigl\{ \beth_{\alpha} : \alpha < \lambda \Bigr\}.</math> One can show that this definition is equivalent to :<math>\beth_\lambda = |\bigcup \Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}|.</math> For instance: *<math>\beth_\omega</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots \Bigr\}</math>. *<math>\beth_{\omega2}</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots, {A_\omega}, \mathcal{P}({A_\omega}), \mathcal{P}(\mathcal{P}({A_\omega})), \mathcal{P}(\mathcal{P}(\mathcal{P}({A_\omega}))), \dots\Bigr\}</math>. *<math>\beth_{\omega^2}</math> is the cardinality of <math>\bigcup \Bigl\{\mathbb{N}, \mathcal{P}(\mathbb{N}), \mathcal{P}(\mathcal{P}(\mathbb{N})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N}))), \dots, {A_\omega}, \mathcal{P}({A_\omega}), \mathcal{P}(\mathcal{P}({A_\omega})), \dots, {A_{\omega2}}, \mathcal{P}({A_{\omega2}}), \mathcal{P}(\mathcal{P}({A_{\omega2}})), \dots, </math> <math> {A_{\omega3}}, \mathcal{P}({A_{\omega3}}), \mathcal{P}(\mathcal{P}({A_{\omega3}})), \dots, \dots \Bigr\}</math>. This equivalence can be shown by seeing that: *for any set <math>\mathbb{S}</math>, the union set of all its members can be no larger than the supremum of its member cardinalities times its own cardinality, <math>|\bigcup\mathbb{S}|\le \Bigl(|\mathbb{S}| \times \sup\Bigl\{|s|:s\in\mathbb{S}\Bigr\}\Bigr)</math> *for any two non-zero cardinalities <math>\kappa_a, \kappa_b</math>, if at least one of them is an infinite cardinality, then the product will be the larger of the two, <math>\kappa_a \times \kappa_b = \max\{\kappa_a, \kappa_b\}</math> *the set <math>\Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}</math> will be smaller than most or all of its subsets for any limit ordinal <math>\lambda</math> *therefore, <math>|\bigcup\Bigl\{ A_{\alpha} : \alpha < \lambda \Bigr\}|=\sup \Bigl\{ \beth_{\alpha} : \alpha < \lambda \Bigr\}</math> for any limit ordinal <math>\lambda</math> Note that this behavior is different from that of successor ordinals. Cardinalities less than <math>\beth_\beta</math> but greater than any <math>\beth_\alpha: \alpha<\beta</math> can exist when <math>\beta</math> is a successor ordinal (in that case, the existence is undecidable in ZFC and controlled by the [[Generalized Continuum Hypothesis]]); but cannot exist when <math>\beta</math> is a limit ordinal, even under the second definition presented. One can also show that the [[von Neumann universe]]s <math>V_{\omega+\alpha}</math> have cardinality <math>\beth_{\alpha}</math>. == Relation to the aleph numbers == Assuming the [[axiom of choice]], infinite cardinalities are [[total order|linearly ordered]]; no two cardinalities can fail to be comparable. Thus, since by definition no infinite cardinalities are between <math>\aleph_0</math> and <math>\aleph_1</math>, it follows that :<math>\beth_1 \ge \aleph_1.</math> Repeating this argument (see [[transfinite induction]]) yields <math>\beth_\alpha \ge \aleph_\alpha</math> for all ordinals <math>\alpha</math>. The [[continuum hypothesis]] is equivalent to :<math>\beth_1=\aleph_1.</math> The [[Continuum hypothesis#Generalized continuum hypothesis|generalized continuum hypothesis]] says the sequence of beth numbers thus defined is the same as the sequence of [[aleph number]]s, i.e., <math>\beth_\alpha = \aleph_\alpha</math> for all ordinals <math>\alpha</math>. == Specific cardinals == === Beth null === Since this is defined to be <math>\aleph_0</math>, or [[aleph null]], sets with cardinality <math>\beth_0</math> include: * the [[natural number]]s <math>\mathbb{N}</math> * the [[rational number]]s <math>\mathbb{Q}</math> * the [[algebraic number]]s <math>\mathbb{A}</math> * the [[computable number]]s and [[computable set]]s * the set of [[finite set]]s of [[integer]]s or of [[rational number|rationals]] or of [[algebraic number]]s * the set of [[Multiset|finite multiset]]s of [[integer]]s * the set of [[finite sequence]]s of [[integer]]s. === Beth one === {{main|cardinality of the continuum}} Sets with cardinality <math>\beth_1</math> include: * the [[transcendental numbers]] * the [[irrational number]]s * the [[real number]]s <math>\mathbb{R}</math> * the [[complex number]]s <math>\mathbb{C}</math> * the [[uncomputable real number]]s * [[Euclidean space]] <math>\mathbb{R}^n</math> * the [[power set]] of the [[natural number]]s <math>2^\mathbb{N}</math> (the set of all subsets of the natural numbers) * the set of [[sequence]]s of integers (i.e., <math>\mathbb{Z}^\mathbb{N}</math>, which includes all functions from <math>\mathbb{N}</math> to <math>\mathbb{Z}</math>) * the set of sequences of real numbers, <math>\mathbb{R}^\mathbb{N}</math> * the set of all [[real analytic function]]s from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> * the set of all [[continuous function]]s from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> * the set of all functions from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> with at most countable discontinuities <ref name=":3">{{cite journal |last=Soltanifar |first=Mohsen |year=2023 |title= A classification of elements of function space F(R,R) |journal=Mathematics |volume=11 |issue=17 |page=3715 |doi=10.3390/math11173715 |doi-access=free |arxiv=2308.06297 }}</ref> *the set of finite subsets of real numbers *the set of all [[analytic function]]s from <math>\mathbb{C}</math> to <math>\mathbb{C}</math> (the [[holomorphic]] functions) *the set of all functions from the natural numbers to the natural numbers (<math>\mathbb{N}^\mathbb{N}</math>). === Beth two === <math>\beth_2</math> (pronounced ''beth two'') is also referred to as <math>2^\mathfrak{c}</math> (pronounced ''two to the power of <math>\mathfrak{c}</math>''). Sets with cardinality <math>\beth_2</math> include: * the [[power set]] of the set of [[real number]]s, so it is the number of [[subset]]s of the [[real line]], or the number of sets of real numbers * the power set of the power set of the set of natural numbers * the set of all [[function (mathematics)|functions]] from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> (<math>\mathbb{R}^\mathbb{R}</math>) * the set of all functions from <math>\mathbb{R}^m</math> to <math>\mathbb{R}^n</math> * the set of all functions from <math>\mathbb{R}</math> to <math>\mathbb{R}</math> with uncountably many discontinuities <ref name=":3"/> * the power set of the set of all functions from the set of natural numbers to itself, or the number of sets of sequences of natural numbers * the [[Stone–Čech compactification]]s of <math>\mathbb{R}</math>, <math>\mathbb{Q}</math>, and <math>\mathbb{N}</math> * the set of deterministic [[fractal]]s in <math>\mathbb{R}^n</math> <ref name=":4">{{cite journal |last=Soltanifar |first=Mohsen |year=2021 |title=A generalization of the Hausdorff dimension theorem for deterministic fractals |journal=Mathematics |volume=9 |issue=13 |page=1546 |arxiv=2007.07991 |doi=10.3390/math9131546 |doi-access=free }}</ref> * the set of random [[fractal]]s in <math>\mathbb{R}^n</math>.<ref name=":5">{{cite journal |last=Soltanifar |first=Mohsen |year=2022 |title=The second generalization of the Hausdorff dimension theorem for random fractals |journal=Mathematics |volume=10 |issue=5 |page=706 |hdl=1807/110291 |hdl-access=free |doi=10.3390/math10050706 |doi-access=free }}</ref> === Beth omega === <math>\beth_\omega</math> (pronounced ''beth omega'') is the smallest [[uncountable]] [[strong limit cardinal]]. ==Generalization== The more general symbol <math>\beth_\alpha(\kappa)</math>, for ordinals <math>\alpha</math> and cardinals <math>\kappa</math>, is occasionally used. It is defined by: :<math>\beth_0(\kappa)=\kappa,</math> :<math>\beth_{\alpha+1}(\kappa)=2^{\beth_\alpha(\kappa)},</math> :<math>\beth_\lambda(\kappa)=\sup\{ \beth_\alpha(\kappa):\alpha<\lambda \}</math> if ''λ'' is a limit ordinal. So :<math>\beth_\alpha=\beth_\alpha(\aleph_0).</math> In [[Zermelo–Fraenkel set theory]] (ZF), for any cardinals <math>\kappa</math> and <math>\mu</math>, there is an ordinal <math>\alpha</math> such that: :<math>\kappa \le \beth_\alpha(\mu).</math> And in ZF, for any cardinal <math>\kappa</math> and ordinals <math>\alpha</math> and <math>\beta</math>: :<math>\beth_\beta(\beth_\alpha(\kappa)) = \beth_{\alpha+\beta}(\kappa).</math> Consequently, in ZF absent [[ur-element]]s, with or without the [[axiom of choice]], for any cardinals <math>\kappa</math> and <math>\mu</math>, the equality :<math>\beth_\beta(\kappa) = \beth_\beta(\mu)</math> holds for all sufficiently large ordinals <math>\beta</math>. That is, there is an ordinal <math>\alpha</math> such that the equality holds for every ordinal <math>\beta \geq \alpha</math>. This also holds in Zermelo–Fraenkel set theory with ur-elements (with or without the axiom of choice), provided that the ur-elements form a set which is equinumerous with a [[pure set]] (a set whose [[transitive set#Transitive closure|transitive closure]] contains no ur-elements). If the axiom of choice holds, then any set of ur-elements is equinumerous with a pure set. == Borel determinacy == [[Borel determinacy]] is implied by the existence of all beths of countable index.<ref>{{cite web |url=https://golem.ph.utexas.edu/category/2021/07/borel_determinacy_does_not_require_replacement.html |title=Borel Determinacy Does Not Require Replacement |last=Leinster |first=Tom |date=23 July 2021 |website=The n-Category Café |publisher=The University of Texas at Austin |access-date=25 August 2021 |quote=}}</ref> == See also == * [[Transfinite number]] * [[Uncountable set]] == References == <references /> ==Bibliography== {{refbegin}} * [[Thomas Forster|T. E. Forster]], ''Set Theory with a Universal Set: Exploring an Untyped Universe'', [[Oxford University Press]], 1995 — ''Beth number'' is defined on page 5. * {{ cite book | last=Bell | first=John Lane |author1link = John Lane Bell|author2=Slomson, Alan B. | year=2006 | title=Models and Ultraproducts: An Introduction | edition=reprint of 1974 | orig-year=1969 | publisher=[[Dover Publications]] | isbn=0-486-44979-3 }} See pages 6 and 204–205 for beth numbers. * {{cite book | last = Roitman | first = Judith |authorlink = Judith Roitman | title = Introduction to Modern Set Theory | date = 2011 | publisher = [[Virginia Commonwealth University]] | isbn = 978-0-9824062-4-3 }} See page 109 for beth numbers. {{refend}} [[Category:Cardinal numbers]] [[Category:Infinity]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Main
(
edit
)
Template:Refbegin
(
edit
)
Template:Refend
(
edit
)
Template:Short description
(
edit
)