Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bi-quinary coded decimal
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Numeral encoding scheme}} {{Use dmy dates|date=May 2019|cs1-dates=y}} {{anchor|2-out-of-7|quibinary}}<!-- parked anchor for class of 2-out-of-7 codes related to biquinary code and quibinary codes <ref name="MIL_1991"/> has some info on them to be incorporated --> {{Multiple image | image1 = Code_Biquinaer.svg | caption1 = Biquinary code example<ref name="Ledley_1960"/> | image2 = Code Biquinaer reflektiert.svg | caption2 = Reflected biquinary code | total_width = 200 }} [[Image:Soroban.JPG|349x349px|thumb|[[Soroban|Japanese abacus]]. The right side represents {{formatnum:1234567890}} in bi-quinary: each column is one digit, with the lower beads representing "ones" and the upper beads "fives".]] '''Bi-quinary coded decimal''' is a [[numeral system|numeral encoding scheme]] used in many [[abacus]]es and in some [[Early computer|early computers]], notably the [[Colossus computer|Colossus]].<ref>{{cite web|url=https://www.youtube.com/watch?v=thrx3SBEpL8&list=WL&index=17&t=0s |archive-url=https://ghostarchive.org/varchive/youtube/20211212/thrx3SBEpL8| archive-date=2021-12-12 |url-status=live|title=Why Use Binary? - Computerphile |publisher=YouTube |date=2015-12-04 |access-date=2020-12-10}}{{cbignore}}</ref> The term '''''bi-quinary''''' indicates that the code comprises both a two-state (''bi'') and a five-state (''quin''ary) component. The encoding resembles that used by many abacuses, with four beads indicating the five values either from 0 through 4 or from 5 through 9 and another bead indicating which of those ranges (which can alternatively be thought of as +5). Several human languages, most notably [[Fula language|Fula]] and [[Wolof language|Wolof]] also use biquinary systems. For example, the Fula word for 6, ''jowi e go'o'', literally means ''five [plus] one''. [[Roman numerals]] use a symbolic, rather than positional, bi-quinary base, even though [[Latin]] is completely decimal. The Korean finger counting system [[Chisanbop]] uses a bi-quinary system, where each finger represents a one and a thumb represents a five, allowing one to count from 0 to 99 with two hands. One advantage of one bi-quinary encoding scheme on digital computers is that it must have two bits set (one in the binary field and one in the quinary field), providing a built-in [[checksum]] to verify if the number is valid or not. (Stuck bits happened frequently with computers using [[Relay|mechanical relays]].) ==Examples== Several different representations of bi-quinary coded decimal have been used by different machines. The two-state component is encoded as one or two [[bit]]s, and the five-state component is encoded using three to five bits. Some examples are: * Roman and Chinese [[abacus]]es * [[George Stibitz|Stibitz]]<ref name="Stibitz_1957"/><!-- In this book Stibitz claims that he invented this code some years after inventing Excess-3 --> relay calculators at Bell Labs from [[Bell Labs#Calculators|Model II]] onwards * [[FACOM 128]] relay calculators at [[Fujitsu]] ===IBM 650=== {{anchor|IBM650code}}<!--link from IBM 650 article--> The [[IBM 650]] uses seven bits: two ''bi'' bits (0 and 5) and five ''quinary'' bits (0, 1, 2, 3, 4), with error checking. Exactly one ''bi'' bit and one ''quinary'' bit is set in a valid digit. The bi-quinary encoding of the internal workings of the machine are evident in the arrangement of its lights – the ''bi'' bits form the top of a T for each digit, and the ''quinary'' bits form the vertical stem. {| class="wikitable" |- ! Value || 05-01234 bits<ref name="Ledley_1960"/> | rowspan="11" | [[File:IBM-650-panel.jpg|thumb|center|IBM 650 front panel while running, with active bits just discernible]] [[File:IBM 650 panel close-up of bi-quinary indicators.jpg|thumb|center|Close-up of IBM 650 indicators while running, with active bits visible]] |- | 0 || 10-10000 |- | 1 || 10-01000 |- | 2 || 10-00100 |- | 3 || 10-00010 |- | 4 || 10-00001 |- | 5 || 01-10000 |- | 6 || 01-01000 |- | 7 || 01-00100 |- | 8 || 01-00010 |- | 9 || 01-00001 |} ===Remington Rand 409=== The [[Remington Rand 409]] has five bits: one ''quinary'' bit (tube) for each of 1, 3, 5, and 7 - only one of these would be on at the time. The fifth ''bi'' bit represented 9 if none of the others were on; otherwise it added 1 to the value represented by the other ''quinary'' bit. The machine was sold in the two models [[UNIVAC 60]] and [[UNIVAC 120]]. {| class="wikitable" |- ! Value || 1357-9 bits |- | 0 || 0000-0 |- | 1 || 1000-0 |- | 2 || 1000-1 |- | 3 || 0100-0 |- | 4 || 0100-1 |- | 5 || 0010-0 |- | 6 || 0010-1 |- | 7 || 0001-0 |- | 8 || 0001-1 |- | 9 || 0000-1 |} ===UNIVAC Solid State=== The [[UNIVAC Solid State]] uses four bits: one ''bi'' bit (5), three binary coded ''quinary'' bits (4 2 1)<ref name="Steinbuch_1962"/><ref name="Steinbuch-Wagner_1967"/><ref name="Steinbuch-Weber-Heinemann_1974"/><ref name="Dokter_1973"/><ref name="Dokter_1975"/><ref name="Savard_2018_Decimal"/> and one [[parity bit|parity check bit]] {| class="wikitable" |- ! Value || p-5-421 bits |- | 0 || 1-0-000 |- | 1 || 0-0-001 |- | 2 || 0-0-010 |- | 3 || 1-0-011 |- | 4 || 0-0-100 |- | 5 || 0-1-000 |- | 6 || 1-1-001 |- | 7 || 1-1-010 |- | 8 || 0-1-011 |- | 9 || 1-1-100 |} ===UNIVAC LARC=== The [[UNIVAC LARC]] has four bits:<ref name="Savard_2018_Decimal"/> one ''bi'' bit (5), three [[Johnson counter]]-coded ''quinary'' bits and one parity check bit. {| class="wikitable" |- ! Value || p-5-qqq bits |- | 0 || 1-0-000 |- | 1 || 0-0-001 |- | 2 || 1-0-011 |- | 3 || 0-0-111 |- | 4 || 1-0-110 |- | 5 || 0-1-000 |- | 6 || 1-1-001 |- | 7 || 0-1-011 |- | 8 || 1-1-111 |- | 9 || 0-1-110 |} ==See also== * [[Binary-coded decimal]] * [[Binary number]] * [[Chisanbop]] * [[Finger binary]] * [[Quinary]] * [[Two-out-of-five code]] * [[FACOM 128]] ==References== {{Reflist|refs= <ref name="Steinbuch_1962">{{cite book |title=Taschenbuch der Nachrichtenverarbeitung |language=de |editor-first=Karl W. |editor-last=Steinbuch |editor-link=Karl W. Steinbuch |author-first=Erich R. |author-last=Berger |chapter=1.3.3. Die Codierung von Zahlen |date=1962 |edition=1 |publisher=[[Springer-Verlag OHG]] |location=Karlsruhe, Germany |publication-place=Berlin / Göttingen / New York |lccn=62-14511 |pages=68–75}}</ref> <ref name="Steinbuch-Wagner_1967">{{cite book |title=Taschenbuch der Nachrichtenverarbeitung |language=de |editor-first1=Karl W. |editor-last1=Steinbuch |editor-link1=Karl W. Steinbuch |editor-first2=Siegfried W. |editor-last2=Wagner |author-first1=Erich R. |author-last1=Berger |author-first2=Wolfgang |author-last2=Händler |author-link2=Wolfgang Händler |date=1967 |orig-year=1962 |edition=2 |publisher=[[Springer-Verlag OHG]] |location=Berlin, Germany |id=Title No. 1036 |lccn=67-21079}}</ref> <ref name="Steinbuch-Weber-Heinemann_1974">{{cite book |title=Taschenbuch der Informatik - Band II - Struktur und Programmierung von EDV-Systemen |language=de |editor-first1=Karl W. |editor-last1=Steinbuch |editor-link1=Karl W. Steinbuch |editor-first2=Wolfgang |editor-last2=Weber <!-- |editor-link2=:de:Wolfgang Weber (Ingenieur)? --> |editor-first3=Traute |editor-last3=Heinemann |date=1974 |orig-year=1967 |edition=3 |volume=2 |work=Taschenbuch der Nachrichtenverarbeitung |publisher=[[Springer-Verlag]] |location=Berlin, Germany |isbn=3-540-06241-6 |lccn=73-80607}}</ref> <ref name="Dokter_1973">{{cite book |title=Digital Electronics |author-first1=Folkert |author-last1=Dokter |author-first2=Jürgen |author-last2=Steinhauer |date=1973-06-18 |series=Philips Technical Library (PTL) / Macmillan Education |publisher=[[The Macmillan Press Ltd.]] / [[N. V. Philips' Gloeilampenfabrieken]] |edition=Reprint of 1st English |location=Eindhoven, Netherlands |sbn=333-13360-9 |isbn=978-1-349-01419-4 |doi=10.1007/978-1-349-01417-0 |url=https://books.google.com/books?id=hlRdDwAAQBAJ |access-date=2020-05-11 }}{{Dead link|date=October 2023 |bot=InternetArchiveBot |fix-attempted=yes }} (270 pages) (NB. This is based on a translation of volume I of the two-volume German edition.)</ref> <ref name="Dokter_1975">{{cite book |author-first1=Folkert |author-last1=Dokter |author-first2=Jürgen |author-last2=Steinhauer |title=Digitale Elektronik in der Meßtechnik und Datenverarbeitung: Theoretische Grundlagen und Schaltungstechnik |language=de |series=Philips Fachbücher |publisher=[[Deutsche Philips GmbH]] |location=Hamburg, Germany |volume=I |date=1975 |orig-year=1969 |edition=improved and extended 5th |isbn=3-87145-272-6 |page=50}} (xii+327+3 pages) (NB. The German edition of volume I was published in 1969, 1971, two editions in 1972, and 1975. Volume II was published in 1970, 1972, 1973, and 1975.)</ref> <ref name="Stibitz_1957">{{cite book |title=Mathematics and Computers |author-first1=George Robert |author-last1=Stibitz |author-link1=George Robert Stibitz |author-first2=Jules A. |author-last2=Larrivee |date=1957 |edition=1 |publisher=[[McGraw-Hill Book Company, Inc.]] |publication-place=New York, US / Toronto, Canada / London, UK |location=Underhill, Vermont, US |lccn=56-10331 |page=105}} (10+228 pages)</ref> <ref name="Savard_2018_Decimal">{{cite web |title=Decimal Representations |author-first=John J. G. |author-last=Savard |date=2018 |orig-year=2006 |work=quadibloc |url=http://www.quadibloc.com/comp/cp0203.htm |access-date=2018-07-16 |url-status=live |archive-url=https://web.archive.org/web/20180716101321/http://www.quadibloc.com/comp/cp0203.htm |archive-date=2018-07-16}}</ref> <ref name="Ledley_1960">{{cite book |title=Digital Computer and Control Engineering |chapter=Part 4. Logical Design of Digital-Computer Circuitry; Chapter 15. Serial Arithmetic Operations; Chapter 15-7. Additional Topics |author-first1=Robert Steven |author-last1=Ledley |author-link1=Robert Steven Ledley |author-first2=Louis S. |author-last2=Rotolo |author-first3=James Bruce |author-last3=Wilson |publisher=[[McGraw-Hill Book Company, Inc.]] (printer: The Maple Press Company, York, Pennsylvania, US) |publication-place=New York, US |series=McGraw-Hill Electrical and Electronic Engineering Series |edition=1 |date=1960 |sbn=07036981-X |isbn=0-07036981-X |id={{ISBN|978-0-07036981-8}}. ark:/13960/t72v3b312 |issn=2574-7916 |ol=OL5776493M |lccn=59015055 |oclc=1033638267 |pages=517–518 |url=http://bitsavers.informatik.uni-stuttgart.de/pdf/columbiaUniv/Ledley_Digital_Computer_and_Control_Engineering_1960.pdf |access-date=2021-02-19 |url-status=live |archive-url=https://web.archive.org/web/20210219203314/http://bitsavers.informatik.uni-stuttgart.de/pdf/columbiaUniv/Ledley_Digital_Computer_and_Control_Engineering_1960.pdf |archive-date=2021-02-19 |quote-page=518 |quote=[…] The use of the biquinary code in this respect is typical. The binary part (i.e., the most significant bit) and the quinary part (the other 4 bits) are first added separately; then the quinary carry is added to the binary part. If a binary carry is generated, this is propagated to the quinary part of the next decimal digit to the left. […]}} [https://archive.org/details/digitalcomputerc00ledl] (xxiv+835+1 pages)</ref> }} ==Further reading== * <!-- <ref name="MIL_1991"> -->{{cite book |title=Military Handbook: Encoders - Shaft Angle To Digital |publisher=[[United States Department of Defense]] |id=MIL-HDBK-231A |date=1991-09-30 |url=http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/download.php?spec=MIL_HDBK_231A.1809.pdf |access-date=2020-07-25 |url-status=live |archive-url=https://web.archive.org/web/20200725051128/http://everyspec.com/MIL-HDBK/MIL-HDBK-0200-0299/download.php?spec=MIL_HDBK_231A.1809.pdf |archive-date=2020-07-25}} (NB. Supersedes MIL-HDBK-231(AS) (1970-07-01).)<!-- </ref> --> {{DEFAULTSORT:Bi-Quinary Coded Decimal}} [[Category:Computer arithmetic]] [[Category:Numeral systems]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Cbignore
(
edit
)
Template:Cite book
(
edit
)
Template:Cite web
(
edit
)
Template:Multiple image
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Use dmy dates
(
edit
)