Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Binomial series
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Mathematical series}} In [[mathematics]], the '''binomial series''' is a generalization of the [[binomial formula]] to cases where the [[exponent]] is not a positive integer: {{NumBlk|:|<math>\begin{align} (1+x)^\alpha &= \sum_{k=0}^\infty \!\binom\alpha k x^k \\ &= 1 +\alpha x +\frac{\alpha(\alpha-1)}{2!} x^2 +\frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots \end{align}</math>|{{EquationRef|1}}}} where <math>\alpha</math> is any [[complex number]], and the [[power series]] on the right-hand side is expressed in terms of the [[Binomial coefficient#Generalization and connection to the binomial series|(generalized) binomial coefficient]]s :<math>\binom{\alpha}{k} = \frac{\alpha (\alpha-1) (\alpha-2) \cdots (\alpha-k+1)}{k!}. </math> The binomial series is the [[MacLaurin series]] for the [[function (mathematics)|function]] <math>f(x)=(1+x)^\alpha</math>. It converges when <math>|x| < 1</math>. If {{mvar|α}} is a nonnegative [[integer]] {{mvar|n}} then the {{math|''x''{{sup|''n'' + 1}}}} term and all later terms in the series are {{math|0}}, since each contains a factor of {{math|(''n'' − ''n'')}}. In this case, the series is a finite polynomial, equivalent to the binomial formula. == Convergence == === Conditions for convergence === Whether ({{EquationNote|1}}) [[convergent series|converges]] depends on the values of the complex numbers {{mvar|α}} and {{mvar|x}}. More precisely: #If {{math|{{!}}''x''{{!}} < 1}}, the series converges [[absolute convergence|absolutely]] for any complex number {{mvar|α}}. #If {{math|1={{!}}''x''{{!}} = 1}}, the series converges absolutely [[if and only if]] either {{math|Re(''α'') > 0}} or {{math|1=''α'' = 0}}, where {{math|Re(''α'')}} denotes the [[complex number|real part]] of {{mvar|α}}. # If {{math|1={{!}}''x''{{!}} = 1}} and {{math|''x'' ≠ −1}}, the series converges if and only if {{math|Re(''α'') > −1}}. #If {{math|1=''x'' = −1}}, the series converges if and only if either {{math|Re(''α'') > 0}} or {{math|1=''α'' = 0}}. #If {{math|{{!}}''x''{{!}} > 1}}, the series [[divergent series|diverges]] except when {{mvar|α}} is a non-negative integer, in which case the series is a finite sum. In particular, if {{mvar|α}} is not a non-negative integer, the situation at the boundary of the [[radius of convergence|disk of convergence]], {{math|1={{abs|''x''}} = 1}}, is summarized as follows: * If {{math|Re(''α'') > 0}}, the series converges absolutely. * If {{math|−1 < Re(''α'') ≤ 0}}, the series converges [[conditional convergence|conditionally]] if {{math|''x'' ≠ −1}} and diverges if {{math|1=''x'' = −1}}. * If {{math|Re(''α'') ≤ −1}}, the series diverges. === Identities to be used in the proof === The following hold for any complex number {{mvar|α}}: :<math>{\alpha \choose 0} \!= 1,</math> {{NumBlk|:|<math> {\alpha \choose k+1} \!= \!{\alpha\choose k} \frac{\alpha-k}{k+1}, </math>|{{EquationRef|2}}}} {{NumBlk|:|<math> {\alpha \choose k-1} \!+ \!{\alpha\choose k} \!= \!{\alpha+1 \choose k}. </math>|{{EquationRef|3}}}} Unless <math>\alpha</math> is a nonnegative integer (in which case the binomial coefficients vanish as <math>k</math> is larger than <math>\alpha</math>), a useful [[asymptotic analysis|asymptotic]] relationship for the binomial coefficients is, in [[Landau notation]]: {{NumBlk|:|<math> {\alpha \choose k} \!= \frac{(-1)^k} {\Gamma(-\alpha)k^ {1+\alpha} } \,(1+o(1)), \quad\text{as }k\to\infty. </math>|{{EquationRef|4}}}} This is essentially equivalent to Euler's definition of the [[Gamma function]]: :<math>\Gamma(z) = \lim_{k \to \infty} \frac{k! \,k^z}{z(z+1)\cdots(z+k)}, </math> and implies immediately the coarser bounds {{NumBlk|:|<math> \frac {m} {k^{1+\operatorname{Re}\,\alpha}}\le \left|{\alpha \choose k}\right| \le \frac {M} {k^{1+\operatorname{Re}\alpha}}, </math>|{{EquationRef|5}}}} for some positive constants {{mvar|m}} and {{mvar|M}} . Formula ({{EquationNote|2}}) for the generalized binomial coefficient can be rewritten as {{NumBlk|:|<math> {\alpha \choose k} \!= \prod_{j=1}^k \!\left(\frac{\alpha + 1}j - 1 \right). </math>|{{EquationRef|6}}}} === Proof === To prove (i) and (v), apply the [[ratio test]] and use formula ({{EquationNote|2}}) above to show that whenever <math>\alpha</math> is not a nonnegative integer, the [[radius of convergence]] is exactly 1. Part (ii) follows from formula ({{EquationNote|5}}), by comparison with the [[Convergence tests#p-series test|{{mvar|p}}-series]] :<math> \sum_{k=1}^\infty \frac1{k^p}, </math> with <math>p=1+\operatorname{Re}(\alpha)</math>. To prove (iii), first use formula ({{EquationNote|3}}) to obtain {{NumBlk|:|<math>(1 + x) \sum_{k=0}^n \!{\alpha \choose k} x^k =\sum_{k=0}^n \!{\alpha+1\choose k} x^k + {\alpha \choose n} x^{n+1}, </math>|{{EquationRef|7}}}} and then use (ii) and formula ({{EquationNote|5}}) again to prove convergence of the right-hand side when <math> \operatorname{Re}(\alpha)> - 1 </math> is assumed. On the other hand, the series does not converge if <math>|x|=1</math> and <math> \operatorname{Re}(\alpha) \le - 1 </math>, again by formula ({{EquationNote|5}}). Alternatively, we may observe that for all <math>j</math>, <math display="inline"> \left| \frac{\alpha + 1}j - 1 \right| \ge 1 - \frac{\operatorname{Re} (\alpha) + 1}j \ge 1 </math>. Thus, by formula ({{EquationNote|6}}), for all <math display="inline"> k, \left|{\alpha \choose k} \right| \ge 1 </math>. This completes the proof of (iii). Turning to (iv), we use identity ({{EquationNote|7}}) above with <math>x=-1</math> and <math>\alpha-1</math> in place of <math>\alpha</math>, along with formula ({{EquationNote|4}}), to obtain :<math>\sum_{k=0}^n \!{\alpha\choose k} (-1)^k = \!{\alpha-1 \choose n} (-1)^n= \frac1{\Gamma(-\alpha+1)n^\alpha} (1+o(1))</math> as <math>n\to\infty</math>. Assertion (iv) now follows from the asymptotic behavior of the sequence <math>n^{-\alpha} = e^{-\alpha \log(n)}</math>. (Precisely, <math> \left|e^{-\alpha\log n}\right| = e^{-\operatorname{Re}(\alpha) \log n}</math> certainly converges to <math>0</math> if <math>\operatorname{Re}(\alpha)>0</math> and diverges to <math>+\infty</math> if <math>\operatorname{Re}(\alpha)<0</math>. If <math>\operatorname{Re}(\alpha)=0</math>, then <math>n^{-\alpha} = e^{-i \operatorname{Im}(\alpha)\log n}</math> converges if and only if the sequence <math> \operatorname{Im}(\alpha)\log n </math> converges <math>\bmod{2\pi}</math>, which is certainly true if <math>\alpha=0</math> but false if <math>\operatorname{Im}(\alpha) \ne 0</math>: in the latter case the sequence is dense <math>\!\bmod{2\pi}</math>, due to the fact that <math>\log n</math> diverges and <math>\log (n+1)-\log n</math> converges to zero). == Summation of the binomial series == The usual argument to compute the sum of the binomial series goes as follows. [[Derivative|Differentiating]] term-wise the binomial series within the disk of convergence {{math|{{abs|''x''}} < 1}} and using formula ({{EquationNote|1}}), one has that the sum of the series is an [[analytic function]] solving the [[ordinary differential equation]] {{math|1=(1 + ''x'')''u''′(''x'') − ''αu''(''x'') = 0}} with [[initial condition]] {{math|1=''u''(0) = 1}}. The unique solution of this problem is the function {{math|1=''u''(''x'') = (1 + ''x'')<sup>''α''</sup>}}. Indeed, multiplying by the [[integrating factor]] {{math|1= (1 + ''x'')<sup>−''α''−1</sup>}} gives :<math>0=(1+x)^{-\alpha}u'(x) - \alpha (1+x)^{-\alpha-1} u(x)= \big[(1+x)^{-\alpha}u(x)\big]'\,,</math> so the function {{math|1= (1 + ''x'')<sup>''−α''</sup>''u''(''x'')}} is a constant, which the initial condition tells us is {{math|1}}. That is, {{math|1=''u''(''x'') = (1 + ''x'')<sup>''α''</sup>}} is the sum of the binomial series for {{math|{{abs|''x''}} < 1}}. The equality extends to {{math|1={{abs|''x''}} = 1}} whenever the series converges, as a consequence of [[Abel's theorem]] and by [[continuous function|continuity]] of {{math|(1 + ''x'')<sup>''α''</sup>}}. == Negative binomial series == Closely related is the ''negative binomial series'' defined by the [[MacLaurin series]] for the function <math>g(x)=(1-x)^{-\alpha}</math>, where <math>\alpha \in \Complex</math> and <math>|x| < 1</math>. Explicitly, :<math>\begin{align} \frac{1}{(1 - x)^\alpha} &= \sum_{k=0}^{\infty} \; \frac{g^{(k)}(0)}{k!} \; x^k \\ &= 1 + \alpha x + \frac{\alpha(\alpha+1)}{2!} x^2 + \frac{\alpha(\alpha+1)(\alpha+2)}{3!} x^3 + \cdots, \end{align}</math> which is written in terms of the [[multiset coefficient]] :<math>\left(\!\!{\alpha\choose k}\!\!\right) = {\alpha+k-1 \choose k} = \frac{\alpha (\alpha+1) (\alpha+2) \cdots (\alpha+k-1)}{k!}\,.</math> When {{mvar|α}} is a positive integer, several common sequences are apparent. The case {{math|1=''α'' = 1}} gives the series {{math|1 + ''x'' + ''x''{{sup|2}} + ''x''{{sup|3}} + ...}}, where the coefficient of each term of the series is simply {{math|1}}. The case {{math|1=''α'' = 2}} gives the series {{math|1 + 2''x'' + 3''x''{{sup|2}} + 4''x''{{sup|3}} + ...}}, which has the counting numbers as coefficients. The case {{math|1=''α'' = 3}} gives the series {{math|1 + 3''x'' + 6''x''{{sup|2}} + 10''x''{{sup|3}} + ...}}, which has the [[triangle numbers]] as coefficients. The case {{math|1=''α'' = 4}} gives the series {{math|1 + 4''x'' + 10''x''{{sup|2}} + 20''x''{{sup|3}} + ...}}, which has the [[tetrahedral numbers]] as coefficients, and similarly for higher integer values of {{mvar|α}}. The negative binomial series includes the case of the [[geometric series]], the [[power series]]<ref>{{citation|url=https://maa.org/sites/default/files/0002989008055.di011924.01p0005u.pdf|title=The geometric series in calculus|author=[[George Andrews (mathematician)|George Andrews]]|journal= The American Mathematical Monthly|volume=105|issue=1|pages=36–40|doi=10.1080/00029890.1998.12004846|year=2018}}</ref> <math display=block>\frac{1}{1-x} = \sum_{n=0}^\infty x^n</math> (which is the negative binomial series when <math>\alpha=1</math>, convergent in the disc <math>|x|<1</math>) and, more generally, series obtained by differentiation of the geometric power series: <math display="block">\frac{1}{(1-x)^n} = \frac{1}{(n-1)!}\frac{d^{n-1}}{dx^{n-1}}\frac{1}{1-x}</math> with <math>\alpha=n</math>, a positive integer.<ref>{{citation|first=Konrad|last=Knopp|authorlink=Konrad Knopp|title=Theory and applications of infinite series|year=1944|publisher=Blackie and Son}}, §22.</ref> == History == The first results concerning binomial series for other than positive-integer exponents were given by Sir [[Isaac Newton]] in the study of [[area]]s enclosed under certain curves. [[John Wallis]] built upon this work by considering expressions of the form {{math|1=''y'' = (1 − ''x''<sup>2</sup>)<sup>''m''</sup>}} where {{mvar|m}} is a fraction. He found that (written in modern terms) the successive coefficients {{math|''c''<sub>''k''</sub>}} of {{math|(−''x''<sup>2</sup>)<sup>''k''</sup>}} are to be found by multiplying the preceding coefficient by {{sfrac|{{mvar|m}} − ({{mvar|k}} − 1)|{{mvar|k}}}} (as in the case of integer exponents), thereby implicitly giving a formula for these coefficients. He explicitly writes the following instances{{efn|{{sfn|Coolidge|1949}} In fact this source gives all non-constant terms with a negative sign, which is not correct for the second equation; one must assume this is an error of transcription.}} :<math>(1-x^2)^{1/2}=1-\frac{x^2}2-\frac{x^4}8-\frac{x^6}{16}\cdots</math> :<math>(1-x^2)^{3/2}=1-\frac{3x^2}2+\frac{3x^4}8+\frac{x^6}{16}\cdots</math> :<math>(1-x^2)^{1/3}=1-\frac{x^2}3-\frac{x^4}9-\frac{5x^6}{81}\cdots</math> The binomial series is therefore sometimes referred to as [[Binomial theorem#Newton's generalized binomial theorem|Newton's binomial theorem]]. Newton gives no proof and is not explicit about the nature of the series. Later, on 1826 [[Niels Henrik Abel]] discussed the subject in a paper published on ''[[Crelle's Journal]]'', treating notably questions of convergence.{{sfn|Abel|1826}} ==See also== {{Portal|Mathematics}} *[[Binomial approximation]] *[[Binomial theorem#Newton's generalized binomial theorem|Binomial theorem]] *[[Table of Newtonian series]] *[[Lambert W function]] == Footnotes == === Notes === {{notelist}} === Citations === {{reflist|20em}} == References == *{{Citation |first=Niels |last=Abel |author-link=Niels Henrik Abel |title=Recherches sur la série 1 + (''m''/1)x + (''m''(''m'' − 1)/1.2)x{{sup|2}} + (''m''(''m'' − 1)(''m'' − 2)/1.2.3)''x''{{sup|3}} + ... |journal=[[Crelle's Journal|Journal für die reine und angewandte Mathematik]] |volume=1 |issue= |year=1826 |pages=311–339 |id= |url=http://www.bibnum.education.fr/math%C3%A9matiques/alg%C3%A9bre/niels-abel-et-les-crit%C3%A8res-de-convergence }} * {{citation |jstor=2305028 |title= The Story of the Binomial Theorem| first= J. L. |last= Coolidge |journal= The American Mathematical Monthly | volume=56 | issue=3 |pages=147–157 |year=1949 |doi=10.2307/2305028 }} == External links == *{{MathWorld | urlname= BinomialSeries | title= Binomial Series}} *{{MathWorld | urlname= BinomialTheorem | title= Binomial Theorem}} *{{PlanetMath | urlname= binomialformula | title= binomial formula}} *{{SpringerEOM | author-first= E.D.|author-last= Solomentsev | title= Binomial series}} *{{cite web|url=https://www.quantamagazine.org/how-isaac-newton-discovered-the-binomial-power-series-20220831/|title=How Isaac Newton Discovered the Binomial Power Series|date=August 31, 2022}} {{Calculus topics}} [[Category:Complex analysis]] [[Category:Factorial and binomial topics]] [[Category:Series (mathematics)]] [[Category:Real analysis]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Calculus topics
(
edit
)
Template:Citation
(
edit
)
Template:Cite web
(
edit
)
Template:Efn
(
edit
)
Template:EquationNote
(
edit
)
Template:EquationRef
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:Notelist
(
edit
)
Template:NumBlk
(
edit
)
Template:PlanetMath
(
edit
)
Template:Portal
(
edit
)
Template:Reflist
(
edit
)
Template:Sfn
(
edit
)
Template:SfnRef
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)
Template:SpringerEOM
(
edit
)