Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Birkhoff interpolation
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{confusing|date=December 2010}} In [[mathematics]], '''Birkhoff interpolation''' is an extension of [[polynomial interpolation]]. It refers to the problem of finding a polynomial <math>P(x)</math> of degree <math>d</math> such that ''only certain'' [[derivative]]s have specified values at specified points: :<math> P^{(n_i)}(x_i) = y_i \qquad\mbox{for } i=1,\ldots,d, </math> where the data points <math>(x_i,y_i)</math> and the nonnegative integers <math>n_i</math> are given. It differs from [[Hermite interpolation]] in that it is possible to specify derivatives of <math>P(x)</math> at some points without specifying the lower derivatives or the polynomial itself. The name refers to [[George David Birkhoff]], who first studied the problem in 1906.<ref>{{Cite journal |last=Birkhoff |first=George David |date=1906 |title=General mean value and remainder theorems with applications to mechanical differentiation and quadrature |url=https://www.ams.org/tran/1906-007-01/S0002-9947-1906-1500736-1/ |journal=Transactions of the American Mathematical Society |language=en |volume=7 |issue=1 |pages=107–136 |doi=10.1090/S0002-9947-1906-1500736-1 |issn=0002-9947|doi-access=free }}</ref> ==Existence and uniqueness of solutions== In contrast to [[Lagrange interpolation]] and [[Hermite interpolation]], a Birkhoff interpolation problem does not always have a unique solution. For instance, there is no quadratic polynomial <math>P(x)</math> such that <math>P(-1)=P(1)=0</math> and <math>P^{(1)}(0)=1</math>. On the other hand, the Birkhoff interpolation problem where the values of <math>P^{(1)}(-1), P(0)</math> and <math>P^{(1)}(1)</math> are given always has a unique solution.<ref>{{Cite web |title=American Mathematical Society |url=https://www.ams.org/journals/bull/1983-09-03/S0273-0979-1983-15204-7/home.html |access-date=2022-05-19 |website=American Mathematical Society |language=en}}</ref> An important problem in the theory of Birkhoff interpolation is to classify those problems that have a unique solution. [[Isaac Jacob Schoenberg|Schoenberg]]<ref>{{Cite journal |last=Schoenberg |first=I. J |date=1966-12-01 |title=On Hermite-Birkhoff interpolation |journal=Journal of Mathematical Analysis and Applications |language=en |volume=16 |issue=3 |pages=538–543 |doi=10.1016/0022-247X(66)90160-0 |issn=0022-247X|doi-access=free }}</ref> formulates the problem as follows. Let <math>d</math> denote the number of conditions (as above) and let <math>k</math> be the number of interpolation points. Given a <math>d\times k</math> matrix <math>E</math>, all of whose entries are either <math>0</math> or <math>1</math>, such that exactly <math>d</math> entries are <math>1</math>, then the corresponding problem is to determine <math>P(x)</math> such that :<math> P^{(j)}(x_i) = y_{i,j} \qquad\forall (i,j) / e_{ij} = 1 </math> The matrix <math>E</math> is called the '''incidence matrix'''. For example, the incidence matrices for the interpolation problems mentioned in the previous paragraph are: :<math> \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad\mathrm{and}\qquad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. </math> Now the question is: Does a Birkhoff interpolation problem with a given incidence matrix <math>E</math> have a unique solution for any choice of the interpolation points? The case with <math>k=2</math> interpolation points was tackled by [[George Pólya]] in 1931.<ref>{{Cite journal |last=Pólya |first=G. |date=1931 |title=Bemerkung zur Interpolation und zur Näherungstheorie der Balkenbiegung |url=https://onlinelibrary.wiley.com/doi/10.1002/zamm.19310110620 |journal=ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik |language=de |volume=11 |issue=6 |pages=445–449 |doi=10.1002/zamm.19310110620|bibcode=1931ZaMM...11..445P }}</ref> Let <math>S_m</math> denote the sum of the entries in the first <math>m</math> columns of the incidence matrix: :<math> S_m = \sum_{i=1}^k \sum_{j=1}^m e_{ij}. </math> Then the Birkhoff interpolation problem with <math>k=2</math> has a unique solution if and only if <math>S_m\geqslant m \quad\forall m</math>. Schoenberg showed that this is a necessary condition for all values of <math>k</math>. ==Some examples== Consider a differentiable function <math>f(x)</math> on <math>[a,b]</math>, such that <math>f(a)=f(b)</math>. Let us see that there is no Birkhoff interpolation quadratic polynomial such that <math>P^{(1)}(c)=f^{(1)}(c)</math> where <math>c=\frac{a+b}{2}</math>: Since <math>f(a)=f(b)</math>, one may write the polynomial as <math>P(x)=A(x-c)^2+B</math> (by [[completing the square]]) where <math>A,B</math> are merely the interpolation coefficients. The derivative of the interpolation polynomial is given by <math>P^{(1)}(x)=2A(x-c)^2</math>. This implies <math>P^{(1)}(c)=0</math>, however this is absurd, since <math>f^{(1)}(c)</math> is not necessarily <math>0</math>. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}_{3\times3} </math> Consider a differentiable function <math>f(x)</math> on <math>[a,b]</math>, and denote <math>x_0=a,x_2=b</math> with <math>x_1\in[a,b]</math>. Let us see that there is indeed Birkhoff interpolation quadratic polynomial such that <math>P(x_1)=f(x_1)</math> and <math>P^{(1)}(x_0)=f^{(1)}(x_0),P^{(1)}(x_2)=f^{(1)}(x_2)</math>. Construct the interpolating polynomial of <math>f^{(1)}(x)</math> at the nodes <math>x_0,x_2</math>, such that <math>\displaystyle P_1(x) = \frac{f^{(1)}(x_2)-f^{(1)}(x_0)}{x_2-x_0}(x-x_0)+f^{(1)}(x_0)</math>. Thus the polynomial : <math>\displaystyle P_2(x) = f(x_1) + \int_{x_1}^x\!P_1(t)\;\mathrm{d}t</math> is the Birkhoff interpolating polynomial. The incidence matrix is given by: :<math> \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}_{3\times3} </math> Given a natural number <math>N</math>, and a differentiable function <math>f(x)</math> on <math>[a,b]</math>, is there a polynomial such that: <math>P(x_0)=f(x_0)</math> and <math>P^{(1)}(x_i)=f^{(1)}(x_i)</math> for <math>i=1,\cdots,N</math> with <math>x_0,x_1,\cdots,x_N\in[a,b]</math>? Construct the Lagrange/[[Newton polynomial]] (same interpolating polynomial, different form to calculate and express them) <math>P_{N-1}(x)</math> that satisfies <math>P_{N-1}(x_i)=f^{(1)}(x_i)</math> for <math>i=1,\cdots,N</math>, then the polynomial <math>\displaystyle P_N(x) = f(x_0) + \int_{x_0}^x\! P_{N-1}(t)\;\mathrm{d}t</math> is the Birkhoff interpolating polynomial satisfying the above conditions. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 & \cdots & 0 \\ \end{pmatrix}_{N\times N} </math> Given a natural number <math>N</math>, and a <math>2N</math> differentiable function <math>f(x)</math> on <math>[a,b]</math>, is there a polynomial such that: <math>P^{(k)}(a)=f^{(k)}(a)</math> and <math>P^{(k)}(b)=f^{(k)}(b)</math> for <math>k=0,2,\cdots,2N</math>? Construct <math>P_1(x)</math> as the interpolating polynomial of <math>f(x)</math> at <math>x=a</math> and <math>x=b</math>, such that <math>P_1(x)=\frac{f^{(2N)}(b)-f^{(2N)}(a)}{b-a}(x-a) +f^{(2N)}(a)</math>. Define then the iterates <math>\displaystyle P_{k+2}(x)=\frac{f^{(2N-2k)}(b)-f^{(2N-2k)}(a)}{b-a}(x-a) +f^{(2N-2k)}(a) + \int_a^x\!\int_a^t\! P_k(s)\;\mathrm{d}s\;\mathrm{d}t </math> . Then <math>P_{2N+1}(x)</math> is the Birkhoff interpolating polynomial. The incidence matrix is given by: :<math> \begin{pmatrix} 1 & 0 & 1 & 0 \cdots \\ 1 & 0 & 1 & 0 \cdots \\ \end{pmatrix}_{2\times N} </math> ==References== [[Category:Interpolation]] <references />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Ambox
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Confusing
(
edit
)