Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Block LU decomposition
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Unreferenced|date=December 2009}} In [[linear algebra]], a '''Block LU decomposition''' is a [[matrix decomposition]] of a [[block matrix]] into a lower block triangular matrix ''L'' and an upper block triangular matrix ''U''. This decomposition is used in [[numerical analysis]] to reduce the complexity of the block matrix formula. ==Block LDU decomposition== :<math> \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I & 0 \\ C A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & D-C A^{-1} B \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix} </math> ==Block Cholesky decomposition== Consider a [[block matrix]]: :<math> \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} I \\ C A^{-1} \end{pmatrix} \,A\, \begin{pmatrix} I & A^{-1}B \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & D-C A^{-1} B \end{pmatrix}, </math> where the matrix <math>\begin{matrix}A\end{matrix}</math> is assumed to be non-singular, <math>\begin{matrix}I\end{matrix}</math> is an identity matrix with proper dimension, and <math>\begin{matrix}0\end{matrix}</math> is a matrix whose elements are all zero. We can also rewrite the above equation using the half matrices: :<math> \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A^{\frac{1}{2}} \\ C A^{-\frac{*}{2}} \end{pmatrix} \begin{pmatrix} A^{\frac{*}{2}} & A^{-\frac{1}{2}}B \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & Q^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & Q^{\frac{*}{2}} \end{pmatrix} ,</math> where the [[Schur complement]] of <math>\begin{matrix}A\end{matrix}</math> in the block matrix is defined by :<math> \begin{matrix} Q = D - C A^{-1} B \end{matrix} </math> and the half matrices can be calculated by means of [[Cholesky decomposition]] or [[LDL decomposition]]. The half matrices satisfy that :<math> \begin{matrix} A^{\frac{1}{2}}\,A^{\frac{*}{2}}=A; \end{matrix} \qquad \begin{matrix} A^{\frac{1}{2}}\,A^{-\frac{1}{2}}=I; \end{matrix} \qquad \begin{matrix} A^{-\frac{*}{2}}\,A^{\frac{*}{2}}=I; \end{matrix} \qquad \begin{matrix} Q^{\frac{1}{2}}\,Q^{\frac{*}{2}}=Q. \end{matrix}</math> Thus, we have :<math> \begin{pmatrix} A & B \\ C & D \end{pmatrix} = LU, </math> where :<math> LU = \begin{pmatrix} A^{\frac{1}{2}} & 0 \\ C A^{-\frac{*}{2}} & 0 \end{pmatrix} \begin{pmatrix} A^{\frac{*}{2}} & A^{-\frac{1}{2}}B \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & Q^{\frac{1}{2}} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & Q^{\frac{*}{2}} \end{pmatrix}. </math> The matrix <math>\begin{matrix}LU\end{matrix}</math> can be decomposed in an algebraic manner into ::<math>L = \begin{pmatrix} A^{\frac{1}{2}} & 0 \\ C A^{-\frac{*}{2}} & Q^{\frac{1}{2}} \end{pmatrix} \mathrm{~~and~~} U = \begin{pmatrix} A^{\frac{*}{2}} & A^{-\frac{1}{2}}B \\ 0 & Q^{\frac{*}{2}} \end{pmatrix}. </math> ==See also== *[[Matrix decomposition]] ==References== {{reflist}} {{DEFAULTSORT:Block Lu Decomposition}} [[Category:Matrix decompositions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Ambox
(
edit
)
Template:Reflist
(
edit
)
Template:Unreferenced
(
edit
)