Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Borwein's algorithm
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Method for calculating the value of pi}} '''Borwein's algorithm''' was devised by [[Jonathan Borwein|Jonathan]] and [[Peter Borwein]] to calculate the value of <math>1 / \pi</math>. This and other algorithms can be found in the book ''Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity''.<ref>Jonathan M. Borwein, Peter B. Borwein, ''Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity'', Wiley, New York, 1987. Many of their results are available in: Jorg Arndt, Christoph Haenel, Pi Unleashed, Springer, Berlin, 2001, {{ISBN|3-540-66572-2}}</ref> ==Ramanujan–Sato series== These two are examples of a [[Ramanujan–Sato series]]. The related [[Chudnovsky algorithm]] uses a discriminant with class number 1. ===Class number 2 (1989)=== Start by setting<ref name="Bailey Borwein 2023">{{cite journal | last=Bailey | first=David H | title=Peter Borwein: A Visionary Mathematician | journal=Notices of the American Mathematical Society | volume=70 | issue=4 | date=2023-04-01 | issn=0002-9920 | doi=10.1090/noti2675 | pages=610–613}}</ref> :<math> \begin{align} A & = 212175710912 \sqrt{61} + 1657145277365 \\ B & = 13773980892672 \sqrt{61} + 107578229802750 \\ C & = \left(5280\left(236674+30303\sqrt{61}\right)\right)^3 \end{align} </math> Then :<math>\frac{1}{\pi} = 12\sum_{n=0}^\infty \frac{ (-1)^n (6n)!\, (A+nB) }{(n!)^3(3n)!\, C^{n+\frac12}}</math> Each additional term of the partial sum yields approximately 25 digits. ===Class number 4 (1993)=== Start by setting<ref name="Borwein Borwein 1993 pp. 281–290">{{cite journal | last1=Borwein | first1=J.M. | last2=Borwein | first2=P.B. | title=Class number three Ramanujan type series for 1/π | journal=Journal of Computational and Applied Mathematics | volume=46 | issue=1–2 | date=1993 | doi=10.1016/0377-0427(93)90302-R | pages=281–290| doi-access=free }}</ref> : <math>\begin{align} A = {} & 63365028312971999585426220 \\ & {} + 28337702140800842046825600\sqrt{5} \\ & {} + 384\sqrt{5} \big(10891728551171178200467436212395209160385656017 \\ & {} + \left. 4870929086578810225077338534541688721351255040\sqrt{5}\right)^\frac12 \\ B = {} & 7849910453496627210289749000 \\ & {} + 3510586678260932028965606400\sqrt{5} \\ & {} + 2515968\sqrt{3110}\big(6260208323789001636993322654444020882161 \\ & {} + \left. 2799650273060444296577206890718825190235\sqrt{5}\right)^\frac12 \\ C = {} & -214772995063512240 \\ & {} - 96049403338648032\sqrt{5} \\ & {} - 1296\sqrt{5}\big(10985234579463550323713318473 \\ & {} + \left. 4912746253692362754607395912\sqrt{5}\right)^\frac12 \end{align}</math> Then : <math>\frac{\sqrt{-C^3}}{\pi} = \sum_{n=0}^{\infty} {\frac{(6n)!}{(3n)!(n!)^3} \frac{A+nB}{C^{3n}}}</math> Each additional term of the series yields approximately 50 digits. ==Iterative algorithms== ===Quadratic convergence (1984)=== Start by setting<ref>{{cite book| title={{pi}} Unleashed |first1=Jörg |last1=Arndt |first2=Christoph |last2=Haenel |publisher=Springer-Verlag |isbn=3-540-66572-2 |year=1998 |page=236}}</ref> :<math> \begin{align} a_0 & = \sqrt{2} \\ b_0 & = 0 \\ p_0 & = 2 + \sqrt{2} \end{align} </math> Then iterate :<math> \begin{align} a_{n+1} & = \frac{\sqrt{a_n} + \frac{1}\sqrt{a_n}}{2} \\ b_{n+1} & = \frac{(1 + b_n) \sqrt{a_n}}{a_n + b_n} \\ p_{n+1} & = \frac{(1 + a_{n+1})\, p_n b_{n+1}}{1 + b_{n+1}} \end{align} </math> Then ''p''<sub>''k''</sub> converges quadratically to {{pi}}; that is, each iteration approximately doubles the number of correct digits. The algorithm is ''not'' self-correcting; each iteration must be performed with the desired number of correct digits for {{pi}}'s final result. ===Cubic convergence (1991)=== Start by setting :<math> \begin{align} a_0 & = \frac13 \\ s_0 & = \frac{\sqrt{3} - 1}{2} \end{align} </math> Then iterate :<math> \begin{align} r_{k+1} & = \frac{3}{1 + 2\left(1-s_k^3\right)^\frac13} \\ s_{k+1} & = \frac{r_{k+1} - 1}{2} \\ a_{k+1} & = r_{k+1}^2 a_k - 3^k\left(r_{k+1}^2-1\right) \end{align} </math> Then ''a<sub>k</sub>'' converges cubically to {{sfrac|1|{{pi}}}}; that is, each iteration approximately triples the number of correct digits. ===Quartic convergence (1985)=== Start by setting<ref>{{cite book | title=The Java Programmers Guide to Numerical Computation |last=Mak |first=Ronald |publisher=Pearson Educational |year=2003 |isbn=0-13-046041-9 |page=353}}</ref> :<math> \begin{align} a_0 & = 2\left(\sqrt{2}-1\right)^2 \\ y_0 & = \sqrt{2}-1 \end{align} </math> Then iterate : <math> \begin{align} y_{k+1} & = \frac{1-\left(1-y_k^4\right)^\frac14}{1+\left(1-y_k^4\right)^\frac14} \\ a_{k+1} & = a_k\left(1+y_{k+1}\right)^4 - 2^{2k+3} y_{k+1} \left(1 + y_{k+1} + y_{k+1}^2\right) \end{align} </math> Then ''a''<sub>''k''</sub> converges quartically against {{sfrac|1|{{pi}}}}; that is, each iteration approximately quadruples the number of correct digits. The algorithm is ''not'' self-correcting; each iteration must be performed with the desired number of correct digits for {{pi}}'s final result. One iteration of this algorithm is equivalent to two iterations of the [[Gauss–Legendre algorithm]]. A proof of these algorithms can be found here:<ref>{{citation|title=Easy Proof of Three Recursive {{pi}}-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}</ref> ===Quintic convergence=== Start by setting :<math> \begin{align} a_0 & = \frac12 \\ s_0 & = 5\left(\sqrt{5} - 2\right) = \frac{5}{\phi^3} \end{align} </math> where <math>\phi = \tfrac{1+\sqrt5}{2}</math> is the [[golden ratio]]. Then iterate :<math> \begin{align} x_{n+1} & = \frac{5}{s_n} - 1 \\ y_{n+1} & = \left(x_{n+1} - 1\right)^2 + 7 \\ z_{n+1} & = \left(\frac12 x_{n+1}\left(y_{n+1} + \sqrt{y_{n+1}^2 - 4x_{n+1}^3}\right)\right)^\frac15 \\ a_{n+1} & = s_n^2 a_n - 5^n\left(\frac{s_n^2 - 5}{2} + \sqrt{s_n\left(s_n^2 - 2s_n + 5\right)}\right) \\ s_{n+1} & = \frac{25}{\left(z_{n+1} + \frac{x_{n+1}}{z_{n+1}} + 1\right)^2 s_n} \end{align} </math> Then a<sub>k</sub> converges quintically to {{sfrac|1|{{pi}}}} (that is, each iteration approximately quintuples the number of correct digits), and the following condition holds: :<math>0 < a_n - \frac{1}{\pi} < 16\cdot 5^n\cdot e^{-5^n}\pi\,\!</math> ===Nonic convergence=== Start by setting :<math> \begin{align} a_0 & = \frac13 \\ r_0 & = \frac{\sqrt{3} - 1}{2} \\ s_0 & = \left(1 - r_0^3\right)^\frac13 \end{align} </math> Then iterate :<math> \begin{align} t_{n+1} & = 1 + 2r_n \\ u_{n+1} & = \left(9r_n \left(1 + r_n + r_n^2\right)\right)^\frac13 \\ v_{n+1} & = t_{n+1}^2 + t_{n+1}u_{n+1} + u_{n+1}^2 \\ w_{n+1} & = \frac{27 \left(1 + s_n + s_n^2\right)}{v_{n+1}} \\ a_{n+1} & = w_{n+1}a_n + 3^{2n-1}\left(1-w_{n+1}\right) \\ s_{n+1} & = \frac{\left(1 - r_n\right)^3}{\left(t_{n+1} + 2u_{n+1}\right)v_{n+1}} \\ r_{n+1} & = \left(1 - s_{n+1}^3\right)^\frac13 \end{align} </math> Then ''a''<sub>''k''</sub> converges nonically to {{sfrac|1|{{pi}}}}; that is, each iteration approximately multiplies the number of correct digits by nine.<ref>{{cite web|url=http://www.hvks.com/Numerical/Downloads/HVE%20Practical%20implementation%20of%20PI%20Algorithms.pdf|title=Practical implementation of π Algorithms|author=Henrik Vestermark|date=4 November 2016|access-date=29 November 2020}}</ref> ==See also== {{Portal|Mathematics}} * [[Bailey–Borwein–Plouffe formula]] * [[Chudnovsky algorithm]] * [[Gauss–Legendre algorithm]] * [[Ramanujan–Sato series]] ==References== <references /> ==External links== * [http://mathworld.wolfram.com/PiFormulas.html Pi Formulas] from Wolfram MathWorld [[Category:Pi algorithms]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:ISBN
(
edit
)
Template:Pi
(
edit
)
Template:Portal
(
edit
)
Template:Sfrac
(
edit
)
Template:Short description
(
edit
)