Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Burnside problem
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|If G is a finitely generated group with exponent n, is G necessarily finite?}} {{Group theory sidebar}} The '''Burnside problem''' asks whether a [[finitely generated group]] in which every element has finite [[Order (group theory)|order]] must necessarily be a [[finite group]]. It was posed by [[William Burnside]] in 1902, making it one of the oldest questions in [[group theory]], and was influential in the development of [[combinatorial group theory]]. It is known to have a negative answer in general, as [[Evgeny Golod]] and [[Igor Shafarevich]] provided a counter-example in 1964. The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements (see [[#Bounded Burnside problem|bounded]] and [[#Restricted Burnside problem|restricted]] below). Some of these variants are still [[open problem|open questions]]. == Brief history == Initial work pointed towards the affirmative answer. For example, if a group ''G'' is finitely generated and the order of each element of ''G'' is a divisor of 4, then ''G'' is finite. Moreover, [[A. I. Kostrikin]] was able to prove in 1958 that among the finite groups with a given number of generators and a given prime exponent, there exists a largest one. This provides a solution for the [[#Restricted Burnside problem|restricted Burnside problem]] for the case of prime exponent. (Later, in 1989, [[Efim Zelmanov]] was able to solve the restricted Burnside problem for an arbitrary exponent.) [[Issai Schur]] had shown in 1911 that any finitely generated periodic group that was a subgroup of the group of invertible ''n'' × ''n'' complex matrices was finite; he used this theorem to prove the [[Jordan–Schur theorem]].<ref name="Curtis">{{cite book |title=Representation Theory of Finite Groups and Associated Algebras |last=Curtis |first=Charles |author2=Reiner, Irving |year=1962 |publisher=John Wiley & Sons |pages=256–262}}</ref> Nevertheless, the general answer to the Burnside problem turned out to be negative. In 1964, Golod and Shafarevich constructed an infinite group of Burnside type without assuming that all elements have uniformly bounded order. In 1968, [[Pyotr Novikov]] and [[Sergei Adian]] supplied a negative solution to the bounded exponent problem for all odd exponents larger than 4381 which was later improved to an odd exponent larger than 665 by Adian.<ref name="Olshanskii">{{cite book |last1=Olʹshanskiĭ |first1=A. I︠U︡ |title=Geometry of defining relations in groups |date=1991 |publisher=Kluwer Academic Publishers |location=Dordrecht ; Boston |isbn=9780792313946 |page=xxii |access-date=26 April 2024 |url=https://books.google.com/books?id=uS_pCAAAQBAJ}}</ref> In 1982, [[A. Yu. Ol'shanskii]] found some striking counterexamples for sufficiently large odd exponents (greater than 10<sup>10</sup>), and supplied a considerably simpler proof based on geometric ideas. The case of even exponents turned out to be much harder to settle. In 1992, S. V. Ivanov announced the negative solution for sufficiently large even exponents divisible by a large power of 2 (detailed proofs were published in 1994 and occupied some 300 pages). Later joint work of Ol'shanskii and Ivanov established a negative solution to an analogue of the Burnside problem for [[hyperbolic group]]s, provided the exponent is sufficiently large. By contrast, when the exponent is small and different from 2, 3, 4 and 6, very little is known. == General Burnside problem == A group ''G'' is called [[periodic group|periodic]] (or torsion) if every element has finite order; in other words, for each ''g'' in ''G'', there exists some positive integer ''n'' such that ''g''<sup>''n''</sup> = 1. Clearly, every finite group is periodic. There exist easily defined groups such as the [[Prüfer group|''p''<sup>∞</sup>-group]] which are infinite periodic groups; but the latter group cannot be finitely generated. <blockquote>'''General Burnside problem.''' If ''G'' is a finitely generated, periodic group, then is ''G'' necessarily finite?</blockquote> This question was answered in the negative in 1964 by [[Evgeny Golod]] and [[Igor Shafarevich]], who gave an example of an infinite [[p-group|''p''-group]] that is finitely generated (see [[Golod–Shafarevich theorem]]). However, the orders of the elements of this group are not ''a priori'' bounded by a single constant. == Bounded Burnside problem == {{unsolved|mathematics|For which ''m'' and ''n'' is <math>B(m, n)</math> finite?}} [[File:FreeBurnsideGroupExp3Gens2.png|thumb|350px|right|The [[Cayley graph]] of the 27-element free Burnside group of rank 2 and exponent 3.]] Part of the difficulty with the general Burnside problem is that the requirements of being finitely generated and periodic give very little information about the possible structure of a group. Therefore, we pose more requirements on ''G''. Consider a periodic group ''G'' with the additional property that there exists a least integer ''n'' such that for all ''g'' in ''G'', ''g''<sup>''n''</sup> = 1. A group with this property is said to be ''periodic with bounded exponent'' ''n'', or just a ''group with exponent'' ''n''. The Burnside problem for groups with bounded exponent asks: <blockquote>'''Burnside problem I.''' If ''G'' is a finitely generated group with exponent ''n'', is ''G'' necessarily finite?</blockquote> It turns out that this problem can be restated as a question about the finiteness of groups in a particular family. The '''free Burnside group''' of rank ''m'' and exponent ''n'', denoted B(''m'', ''n''), is a group with ''m'' distinguished generators ''x''<sub>1</sub>, ..., ''x<sub>m</sub>'' in which the identity ''x<sup>n</sup>'' = 1 holds for all elements ''x'', and which is the "largest" group satisfying these requirements. More precisely, the characteristic property of B(''m'', ''n'') is that, given any group ''G'' with ''m'' generators ''g''<sub>1</sub>, ..., ''g<sub>m</sub>'' and of exponent ''n'', there is a unique homomorphism from B(''m'', ''n'') to ''G'' that maps the ''i''th generator ''x<sub>i</sub>'' of B(''m'', ''n'') into the ''i''th generator ''g<sub>i</sub>'' of ''G''. In the language of [[presentation of a group|group presentations]], the free Burnside group B(''m'', ''n'') has ''m'' generators ''x''<sub>1</sub>, ..., ''x<sub>m</sub>'' and the relations ''x<sup>n</sup>'' = 1 for each word ''x'' in ''x''<sub>1</sub>, ..., ''x<sub>m</sub>'', and any group ''G'' with ''m'' generators of exponent ''n'' is obtained from it by imposing additional relations. The existence of the free Burnside group and its uniqueness up to an isomorphism are established by standard techniques of group theory. Thus if ''G'' is any finitely generated group of exponent ''n'', then ''G'' is a [[group homomorphism|homomorphic image]] of B(''m'', ''n''), where ''m'' is the number of generators of ''G''. The Burnside problem for groups with bounded exponent can now be restated as follows: <blockquote>'''Burnside problem II.''' For which positive integers ''m'', ''n'' is the free Burnside group B(''m'', ''n'') finite?</blockquote> The full solution to Burnside problem in this form is not known. Burnside considered some easy cases in his original paper: *B(1, ''n'') is the [[cyclic group]] of order ''n''. *B(''m'', 2) is the [[direct product of groups|direct product]] of ''m'' copies of the cyclic group of order 2 and hence finite.<ref group="note">The key step is to observe that the identities ''a''<sup>2</sup> = ''b''<sup>2</sup> = (''ab'')<sup>2</sup> = 1 together imply that ''ab'' = ''ba'', so that a free Burnside group of exponent two is necessarily [[abelian group|abelian]].</ref> The following additional results are known (Burnside, Sanov, [[Marshall Hall (mathematician)|M. Hall]]): *B(''m'', 3), B(''m'', 4), and B(''m'', 6) are finite for all ''m''. {{unsolved|mathematics|Is ''B(2, 5)'' finite?}} The particular case of B(2, 5) remains open. The breakthrough in solving the Burnside problem was achieved by [[Pyotr Novikov]] and [[Sergei Adian]] in 1968. Using a complicated combinatorial argument, they demonstrated that for every [[even and odd numbers|odd]] number ''n'' with ''n'' > 4381, there exist infinite, finitely generated groups of exponent ''n''. Adian later improved the bound on the odd exponent to 665.<ref>[[John Britton (mathematician)|John Britton]] proposed a nearly 300 page alternative proof to the Burnside problem in 1973; however, Adian ultimately pointed out a flaw in that proof.</ref> In 2015, Adian claimed to have obtained a lower bound of 101 for odd ''n''; however, the full proof of this lower bound was never completed and never published. The case of even exponent turned out to be considerably more difficult. It was only in 1994 that Sergei Vasilievich Ivanov was able to prove an analogue of Novikov–Adian theorem: for any ''m'' > 1 and an even ''n'' ≥ 2<sup>48</sup>, ''n'' divisible by 2<sup>9</sup>, the group B(''m'', ''n'') is infinite; together with the Novikov–Adian theorem, this implies infiniteness for all ''m'' > 1 and ''n'' ≥ 2<sup>48</sup>. This was improved in 1996 by I. G. Lysënok to ''m'' > 1 and ''n'' ≥ 8000. Novikov–Adian, Ivanov and Lysënok established considerably more precise results on the structure of the free Burnside groups. In the case of the odd exponent, all finite subgroups of the free Burnside groups were shown to be cyclic groups. In the even exponent case, each finite subgroup is contained in a product of two [[dihedral group]]s, and there exist non-cyclic finite subgroups. Moreover, the [[word problem for groups|word]] and [[conjugacy problem|conjugacy]] problems were shown to be effectively solvable in B(''m'', ''n'') both for the cases of odd and even exponents ''n''. A famous class of counterexamples to the Burnside problem is formed by finitely generated non-cyclic infinite groups in which every nontrivial proper subgroup is a finite [[cyclic group]], the so-called [[Tarski monster group|Tarski Monsters]]. First examples of such groups were constructed by [[A. Yu. Ol'shanskii]] in 1979 using geometric methods, thus affirmatively solving O. Yu. Schmidt's problem. In 1982 Ol'shanskii was able to strengthen his results to establish existence, for any sufficiently large [[prime number]] ''p'' (one can take ''p'' > 10<sup>75</sup>) of a finitely generated infinite group in which every nontrivial proper subgroup is a [[cyclic group]] of order ''p''. In a paper published in 1996, Ivanov and Ol'shanskii solved an analogue of the Burnside problem in an arbitrary [[hyperbolic group]] for sufficiently large exponents. == Restricted Burnside problem == Formulated in the 1930s, it asks another, related, question: <blockquote>'''Restricted Burnside problem.''' If it is known that a group ''G'' with ''m'' generators and exponent ''n'' is finite, can one conclude that the order of ''G'' is bounded by some constant depending only on ''m'' and ''n''? Equivalently, are there only finitely many ''finite'' groups with ''m'' generators of exponent ''n'', up to [[group isomorphism|isomorphism]]?</blockquote> This variant of the Burnside problem can also be stated in terms of category theory: an affirmative answer for all ''m'' is equivalent to saying that the category of finite groups of exponent ''n'' has all finite limits and colimits.<ref name="Nahlus-Yang">{{cite arXiv |eprint=2107.09900 |page=19 |last1=Nahlus |first1=Nazih |last2=Yang |first2=Yilong |title=Projective Limits and Ultraproducts of Nonabelian Finite Groups |date=2021 |class=math.GR }} Corollary 3.2</ref> It can also be stated more explicitly in terms of certain universal groups with ''m'' generators and exponent ''n''. By basic results of group theory, the intersection of two [[normal subgroups]] of finite [[Index of a subgroup|index]] in any group is itself a normal subgroup of finite index. Thus, the intersection ''M'' of all the normal subgroups of the free Burnside group B(''m'', ''n'') which have finite index is a normal subgroup of B(''m'', ''n''). One can therefore define the free restricted Burnside group B<sub>0</sub>(''m'', ''n'') to be the [[quotient group]] B(''m'', ''n'')/''M''. Every finite group of exponent ''n'' with ''m'' generators is isomorphic to B(''m'',''n'')/''N'' where ''N'' is a normal subgroup of B(''m'',''n'') with finite index. Therefore, by the [[isomorphism theorem | Third Isomorphism Theorem]], every finite group of exponent ''n'' with ''m'' generators is isomorphic to B<sub>0</sub>(''m'',''n'')/(''N''/''M'') — in other words, it is a homomorphic image of B<sub>0</sub>(''m'', ''n''). The restricted Burnside problem then asks whether B<sub>0</sub>(''m'', ''n'') is a finite group. In terms of category theory, B<sub>0</sub>(''m'', ''n'') is the coproduct of ''n'' cyclic groups of order ''m'' in the category of finite groups of exponent ''n''. In the case of the prime exponent ''p'', this problem was extensively studied by [[A. I. Kostrikin]] during the 1950s, prior to the negative solution of the general Burnside problem. His solution, establishing the finiteness of B<sub>0</sub>(''m'', ''p''), used a relation with deep questions about identities in [[Lie algebra]]s in finite characteristic. The case of arbitrary exponent has been completely settled in the affirmative by [[Efim Zelmanov]], who was awarded the [[Fields Medal]] in 1994 for his work. == Notes == {{reflist|group=note}} == References == <references/> == Bibliography == * [[Sergei Adian|S. I. Adian]] (1979) ''The Burnside problem and identities in groups''. Translated from the Russian by John Lennox and James Wiegold. [[Ergebnisse der Mathematik und ihrer Grenzgebiete]] [Results in Mathematics and Related Areas], 95. Springer-Verlag, Berlin-New York. {{ISBN|3-540-08728-1}}. * {{cite journal |author=S. I. Adian |year=2015 |title=New estimates of odd exponents of infinite Burnside groups |language=ru |journal=Trudy Matematicheskogo Instituta imeni V. A. Steklova |volume=289 |pages=41–82 |doi=10.1134/S0371968515020041}} Translation in {{cite journal |journal= Proceedings of the Steklov Institute of Mathematics|volume=289 |year=2015 |issue=1 |pages=33–71 |title=New estimates of odd exponents of infinite Burnside groups |last1=Adian |first1=S. I.|doi=10.1134/S0081543815040045|doi-access=}} * {{cite journal |doi=10.1142/S0218196794000026|title=The Free Burnside Groups of Sufficiently Large Exponents|year=1994|author1=S. V. Ivanov|journal=International Journal of Algebra and Computation|volume=04|pages=1–308}} * {{cite journal |doi=10.1090/S0002-9947-96-01510-3 |title=Hyperbolic groups and their quotients of bounded exponents |year=1996 |author1=S. V. Ivanov |author2=A. Yu. Ol'Shanskii |journal=Transactions of the American Mathematical Society |volume=348 |issue=6 |pages=2091–2138 |doi-access=free }} * A. I. Kostrikin (1990) ''Around Burnside''. Translated from the Russian and with a preface by [[James Wiegold]]. ''Ergebnisse der Mathematik und ihrer Grenzgebiete'' (3) [Results in Mathematics and Related Areas (3)], 20. Springer-Verlag, Berlin. {{ISBN|3-540-50602-0}}. * {{cite journal |author=I. G. Lysënok |year=1996 |title=Infinite Burnside groups of even exponent |language=ru |journal=Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya |volume=60 |issue=3 |pages=3–224 |doi=10.4213/im77|doi-access=free }} Translation in {{cite journal |journal= Izvestiya: Mathematics|volume=60 |year=1996 |issue=3 |pages=453–654 |title=Infinite Burnside groups of even exponent |last1=Lysënok |first1=I. G.|doi=10.1070/IM1996v060n03ABEH000077|bibcode=1996IzMat..60..453L |s2cid=250838960 }} * A. Yu. Ol'shanskii (1989) ''Geometry of defining relations in groups''. Translated from the 1989 Russian original by Yu. A. Bakhturin (1991) ''Mathematics and its Applications'' (Soviet Series), 70. Dordrecht: Kluwer Academic Publishers Group. {{ISBN|0-7923-1394-1}}. * {{cite journal |author=E. Zelmanov |year=1990 |title=Solution of the restricted Burnside problem for groups of odd exponent |language=ru |journal=Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya |volume=54 |issue=1 |pages=42–59, 221 |url=http://mi.mathnet.ru/eng/izv1104|author-link=Efim Zelmanov }} Translation in {{cite journal |journal= Mathematics of the USSR-Izvestiya|volume=36 |year=1991 |issue=1 |pages=41–60 |title=Solution of the Restricted Burnside Problem for Groups of Odd Exponent |last1=Zel'manov |first1=E I|s2cid=39623037 |doi=10.1070/IM1991v036n01ABEH001946|bibcode=1991IzMat..36...41Z }} * {{cite journal |author=E. Zelmanov |year=1991 |title=Solution of the restricted Burnside problem for 2-groups |language=ru |journal=Matematicheskii Sbornik |volume=182 |issue=4 |pages=568–592 |url=http://mi.mathnet.ru/eng/msb1311|author-link=Efim Zelmanov }} Translation in {{cite journal |journal= Mathematics of the USSR-Sbornik|volume=72 |year=1992 |issue=2 |pages=543–565 |title=A Solution of the Restricted Burnside Problem for 2-groups |last1=Zel'manov |first1=E I|doi=10.1070/SM1992v072n02ABEH001272|bibcode=1992SbMat..72..543Z }} == External links == * [http://www-history.mcs.st-andrews.ac.uk/HistTopics/Burnside_problem.html History of the Burnside problem] at [[MacTutor History of Mathematics archive]] [[Category:Combinatorial group theory]] [[Category:Unsolved problems in mathematics]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite journal
(
edit
)
Template:Group theory sidebar
(
edit
)
Template:ISBN
(
edit
)
Template:Reflist
(
edit
)
Template:Short description
(
edit
)
Template:Unsolved
(
edit
)