Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Caldera
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Cauldron-like volcanic feature formed by the emptying of a magma chamber}} {{Other uses}} {{Use dmy dates|date=March 2020}} [[File:Mount Mazama eruption timeline.PNG|thumb|right|[[Mount Mazama]]'s eruption timeline, an example of caldera formation]] A '''caldera''' ({{IPAc-en|k|ɔː|l|ˈ|d|ɛr|ə|,_|k|æ|l|-}}<ref>{{cite Dictionary.com|caldera}}</ref> {{respell|kawl|DERR|ə|,_|kal|-}}) is a large [[cauldron]]-like hollow that forms shortly after the emptying of a [[magma chamber]] in a [[volcanic eruption]]. An eruption that ejects large volumes of magma over a short period of time can cause significant detriment to the structural integrity of such a chamber, greatly diminishing its capacity to support its own roof and any substrate or rock resting above. The ground surface then collapses into the emptied or partially emptied magma chamber, leaving a large depression at the surface (from one to dozens of kilometers in diameter).<ref>{{cite journal |last1=Troll|first1=V. R. |last2=Walter|first2=T. R. |last3=Schmincke|first3=H.-U. |date=2002-02-01 |title=Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence |url=https://pubs.geoscienceworld.org/gsa/geology/article-abstract/30/2/135/192320/Cyclic-caldera-collapse-Piston-or-piecemeal |journal=[[Geology (journal)|Geology]] |language=en |volume=30 |issue=2 |pages=135–38 |doi=10.1130/0091-7613(2002)030<0135:CCCPOP>2.0.CO;2 |bibcode=2002Geo....30..135T |issn=0091-7613|url-access=subscription }}</ref> Although sometimes described as a [[Volcanic crater|crater]], the feature is actually a type of [[sinkhole]], as it is formed through [[subsidence]] and collapse rather than an explosion or impact. Compared to the thousands of volcanic eruptions that occur over the course of a century, the formation of a caldera is a rare event, occurring only a few times within a given window of 100 years.<ref name="Gudmundsson_EtAl_2016"/> Only eight caldera-forming collapses are known to have occurred between 1911 and 2018,<ref name="Gudmundsson_EtAl_2016">{{cite journal |last1=Gudmundsson |first1=Magnús T. |last2=Jónsdóttir |first2=Kristín |last3=Hooper |first3=Andrew |last4=Holohan |first4=Eoghan P. |last5=Halldórsson |first5=Sæmundur A. |last6=Ófeigsson |first6=Benedikt G. |last7=Cesca |first7=Simone |last8=Vogfjörd |first8=Kristín S. |last9=Sigmundsson |first9=Freysteinn |last10=Högnadóttir |first10=Thórdís |last11=Einarsson |first11=Páll |last12=Sigmarsson |first12=Olgeir |last13=Jarosch |first13=Alexander H. |last14=Jónasson |first14=Kristján |last15=Magnússon |first15=Eyjólfur |last16=Hreinsdóttir |first16=Sigrún |last17=Bagnardi |first17=Marco |last18=Parks |first18=Michelle M. |last19=Hjörleifsdóttir |first19=Vala |last20=Pálsson |first20=Finnur |last21=Walter |first21=Thomas R. |last22=Schöpfer |first22=Martin P. J. |last23=Heimann |first23=Sebastian |last24=Reynolds |first24=Hannah I. |last25=Dumont |first25=Stéphanie |last26=Bali |first26=Eniko |last27=Gudfinnsson |first27=Gudmundur H. |last28=Dahm |first28=Torsten |last29=Roberts |first29=Matthew J. |last30=Hensch |first30=Martin |last31=Belart |first31=Joaquín M. C. |last32=Spaans |first32=Karsten |last33=Jakobsson |first33=Sigurdur |last34=Gudmundsson |first34=Gunnar B. |last35=Fridriksdóttir |first35=Hildur M. |last36=Drouin |first36=Vincent |last37=Dürig |first37=Tobias |last38=Aðalgeirsdóttir |first38=Guðfinna |last39=Riishuus |first39=Morten S. |last40=Pedersen |first40=Gro B. M. |last41=van Boeckel |first41=Tayo |last42=Oddsson |first42=Björn |last43=Pfeffer |first43=Melissa A. |last44=Barsotti |first44=Sara |last45=Bergsson |first45=Baldur |last46=Donovan |first46=Amy |last47=Burton |first47=Mike R. |last48=Aiuppa |first48=Alessandro |title=Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow |journal=Science |date=15 July 2016 |volume=353 |issue=6296 |pages=aaf8988 |doi=10.1126/science.aaf8988 |pmid=27418515 |hdl=10447/227125 |s2cid=206650214 |url=http://eprints.whiterose.ac.uk/103058/1/Gudmundsson_et_al_2016_Science.pdf |archive-url=https://web.archive.org/web/20180724114153/http://eprints.whiterose.ac.uk/103058/1/Gudmundsson_et_al_2016_Science.pdf |archive-date=2018-07-24 |url-status=live }}</ref> with a caldera collapse at [[Kīlauea]], [[Hawaii (island)|Hawaii]], in 2018.<ref name="Shelley_Thelen_2019">{{cite journal | title=Anatomy of a Caldera Collapse: Kīlauea 2018 Summit Seismicity Sequence in High Resolution | last1=Shelly | first1=D.R. |last2=Thelen |first2=W.A. | journal=Geophysical Research Letters | year=2019 | volume=46 | issue=24 | pages=14395–14403 | doi=10.1029/2019GL085636| bibcode=2019GeoRL..4614395S | s2cid=214287960 | doi-access=free }}</ref> Volcanoes that have formed a caldera are sometimes described as "caldera volcanoes".<ref>{{cite journal | last1=Druitt | first1=T. H. | last2=Costa | first2=F. | last3=Deloule | first3=E. | last4=Dungan | first4=M. | last5=Scaillet | first5=B. | title=Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano | journal=Nature | volume=482 | issue=7383 | date=2012 | issn=0028-0836 | doi=10.1038/nature10706 | pages=77–80| pmid=22297973 | bibcode=2012Natur.482...77D | hdl=10220/7536 | hdl-access=free }}</ref> == Etymology == The term ''caldera'' comes from [[Spanish language|Spanish]] ''{{Wikt-lang|es|caldera}}'', and [[Latin]] ''{{Wikt-lang|la|caldaria}}'', meaning "cooking pot".<ref name="cole-etal-2005">{{cite journal |last1=Cole |first1=J |last2=Milner |first2=D |last3=Spinks |first3=K |title=Calderas and caldera structures: a review |journal=Earth-Science Reviews |date=February 2005 |volume=69 |issue=1–2 |pages=1–26 |doi=10.1016/j.earscirev.2004.06.004|bibcode=2005ESRv...69....1C }}</ref> In some texts the English term ''cauldron'' is also used,<ref name="smith-bailey-1968"/> though in more recent work the term ''cauldron'' refers to a caldera that has been deeply eroded to expose the beds under the caldera floor.<ref name="cole-etal-2005"/> The term ''caldera'' was introduced into the geological vocabulary by the German geologist [[Leopold von Buch]] when he published his memoirs of his 1815 visit to the [[Canary Islands]],{{refn|group=note|name=note 1|Leopold von Buch's book ''Physical Description of the Canary Isles'' was published in 1825.}} where he first saw the Las Cañadas caldera on [[Tenerife]], with Mount [[Teide]] dominating the landscape, and then the [[Caldera de Taburiente]] on [[La Palma]].<ref>{{cite book |last1=von Buch |first1=L. |year=1820 |title=Ueber die Zusammensetzung der basaltischen Inseln und ueber Erhebungs-Cratere |location=Berlin |publisher=University of Lausanne |url=https://books.google.com/books?id=-_sTAAAAQAAJ&q=von%20Buch%2C%20L.%201820.%20Uber%20die%20Zusammensetzung%20der%20Basaltischen%20Inseln%20und%20%C3%BCber%20Erhebungs%20Kratere.%20A%20lecture%20delivered%20before%20the%20Prussian%20Academy%20on%20Sciences%20in%20May%201818%2C%20Berlin.&pg=PA1 |access-date=28 December 2020}}</ref><ref name="cole-etal-2005"/> ==Caldera formation== [[File:Origin of volcanic caldera via analogue model.gif|thumb|Animation of an analogue experiment showing the origin of a mock volcanic caldera in box filled with flour]] [[File:Toba zoom.jpg|thumb|[[Landsat]] image of [[Lake Toba]], on the island of [[Sumatra]], [[Indonesia]] (100 km/62 mi long and 30 km/19 mi wide, one of the world's largest calderas). A [[resurgent dome]] formed the island of [[Samosir]].]] [[File:Cagar Alam Rawa Danau Caldera.png|thumb|Topographic map of Cagar Alam Rawa Danau Caldera in Indonesia]] A collapse is triggered by the emptying of the [[magma chamber]] beneath the volcano, sometimes as the result of a large explosive [[volcano|volcanic eruption]] (see [[1815 eruption of Mount Tambora|Tambora]]<ref>{{cite web |last1=Greshko |first1=Michael |title=201 Years Ago, This Volcano Caused a Climate Catastrophe |url=https://www.nationalgeographic.com/news/2016/04/160408-tambora-eruption-volcano-anniversary-indonesia-science/ |archive-url=https://web.archive.org/web/20190926233008/https://www.nationalgeographic.com/news/2016/04/160408-tambora-eruption-volcano-anniversary-indonesia-science/ |url-status=dead |archive-date=26 September 2019 |website=National Geographic |date=8 April 2016 |access-date=2 September 2020}}</ref> in 1815), but also during effusive eruptions on the flanks of a volcano (see [[Piton de la Fournaise]] in 2007)<ref>{{Cite gvp|vn=233020|title=Piton de la Fournaise|date=2019}}</ref> or in a connected fissure system (see [[Bárðarbunga]] in 2014–2015). If enough [[magma]] is ejected, the emptied chamber is unable to support the weight of the volcanic edifice above it. A roughly circular [[Fracture (geology)|fracture]], the "ring fault", develops around the edge of the chamber. Ring fractures serve as feeders for fault [[intrusion]]s, which are also known as [[ring dike]]s.<ref name="philpotts-ague-2009">{{cite book |last1=Philpotts |first1=Anthony R. |last2=Ague |first2=Jay J. |title=Principles of igneous and metamorphic petrology |date=2009 |publisher=Cambridge University Press |location=Cambridge, UK |isbn=9780521880060 |edition=2nd}}</ref>{{rp|86–89}} Secondary volcanic vents may form above the ring fracture.<ref>{{cite book|last1=Dethier|first1=David P.|last2=Kampf|first2=Stephanie K.|title=Geology of the Jemez Region II|date=2007|publisher=Ne Mexico Geological Society|page=499 p|url=http://nmgs.nmt.edu/publications/guidebooks/58|access-date=6 November 2015|archive-date=17 October 2015|archive-url=https://web.archive.org/web/20151017020924/http://nmgs.nmt.edu/publications/guidebooks/58/|url-status=dead}}</ref> As the magma chamber empties, the center of the volcano within the ring fracture begins to collapse. The collapse may occur as the result of a single cataclysmic eruption, or it may occur in stages as the result of a series of eruptions. The total area that collapses may be hundreds of square kilometers.<ref name="cole-etal-2005"/> == Mineralization in calderas == Some calderas are known to host rich [[ore deposit]]s. Metal-rich fluids can circulate through the caldera, forming hydrothermal ore deposits of metals such as lead, silver, gold, mercury, lithium, and uranium.<ref>{{cite journal |last1=John |first1=David A. |date=1 February 2008 |title=Supervolcanoes and Metallic Ore Deposits |url=https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7b1980e74f0051da6ec9e46bbb4a20b5565696ba |url-status=live |journal=[[Elements (journal)|Elements]] |volume=4 |issue=1 |pages=22 |bibcode=2008Eleme...4...22J |citeseerx= |doi=10.2113/GSELEMENTS.4.1.22 |archive-url=https://web.archive.org/web/20250206153724/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7b1980e74f0051da6ec9e46bbb4a20b5565696ba |archive-date=6 February 2025|url-access=subscription }}</ref> One of the world's best-preserved [[Mineralization (geology)|mineralized]] calderas is the [[Sturgeon Lake Caldera]] in [[northwestern Ontario]], Canada, which formed during the [[Neoarchean]] [[Era (geology)|era]]<ref>{{cite web |title=Short Course and Field Investigations of Precambrian Volcanic Rocks, Hydrothermal Alteration, and Associated Mineral Deposits |url=http://www.d.umn.edu/prc/workshops/S08workshop.html |url-status=dead |archive-url=https://web.archive.org/web/20160304112337/http://www.d.umn.edu/prc/workshops/S08workshop.html |archive-date=4 March 2016 |access-date=2014-03-20 |publisher=Precambrian Research Center, University of Minnesota, Duluth |at=Field Trip |quote=In the Sturgeon Lake area of northwestern Ontario, one of the world’s best preserved mineralized Neoarchean caldera complexes will be investigated.}}</ref> about 2.7 billion years ago.<ref>{{cite web | title=Caldera volcanoes |publisher=University of Minnesota, Dultuh|first=Ron|last=Morton|date=18 March 2001 | url=http://www.d.umn.edu/~rmorton/ronshome/Volcanoes/calderas.html | archive-url=https://web.archive.org/web/20031102004227/http://www.d.umn.edu/~rmorton/ronshome/Volcanoes/calderas.html | archive-date=2 November 2003 | url-status=dead}}</ref> In the [[San Juan volcanic field]], ore veins were emplaced in fractures associated with several calderas, with the greatest mineralization taking place near the youngest and most silicic intrusions associated with each caldera.<ref>{{cite journal |last1=Steven |first1=Thomas A. |last2=Luedke |first2=Robert G. |first3=Peter W. |last3=Lipman |title=Relation of mineralization to calderas in the San Juan volcanic field, southwestern Colorado |journal=J. Res. US Geol. Surv. |volume=2 |year=1974 |issue=4 |pages=405–409|bibcode=1974JRUGS...2..405S }}</ref> == Types of caldera == ===Explosive caldera eruptions=== {{Further|Explosive eruption}} Explosive caldera eruptions are produced by a magma chamber whose [[magma]] is rich in [[silica]]. Silica-rich magma has a high [[viscosity]], and therefore does not flow easily like [[basalt]].<ref name="philpotts-ague-2009" />{{rp|23–26}} The magma typically also contains a large amount of dissolved gases, up to 7 [[wt%]] for the most silica-rich magmas.<ref>{{cite book |last1=Schmincke |first1=Hans-Ulrich |title=Volcanism |date=2003 |publisher=Springer |location=Berlin |isbn=9783540436508 |pages=42–43}}</ref> When the magma approaches the surface of the Earth, the drop in [[confining pressure]] causes the trapped gases to rapidly bubble out of the magma, fragmenting the magma to produce a mixture of [[volcanic ash]] and other [[tephra]] with the very hot gases.{{sfn|Schmincke|2003|pp=155–157}} The mixture of ash and volcanic gases initially rises into the atmosphere as an [[eruption column]]. However, as the volume of erupted material increases, the eruption column is unable to [[Entrainment (hydrodynamics)|entrain]] enough air to remain buoyant, and the eruption column collapses into a tephra fountain that falls back to the surface to form [[pyroclastic flows]].{{sfn|Schmincke|2003|p=157}} Eruptions of this type can spread ash over vast areas, so that ash flow [[tuff]]s emplaced by silicic caldera eruptions are the only volcanic product with volumes rivaling those of [[flood basalt]]s.<ref name="philpotts-ague-2009" />{{rp|77}} For example, when [[Yellowstone Caldera]] last erupted some 650,000 years ago, it released about 1,000 km<sup>3</sup> of material (as measured in dense rock equivalent (DRE)), covering a substantial part of [[North America]] in up to two metres of debris.<ref name="USGSFS3024">{{cite web|first1=Jacob B. |last1=Lowenstern |first2=Robert L. |last2=Christiansen |first3=Robert B. |last3=Smith |first4=Lisa A. |last4=Morgan |first5=Henry |last5=Heasler |title=Steam Explosions, Earthquakes, and Volcanic Eruptions—What's in Yellowstone's Future? – U.S. Geological Survey Fact Sheet 2005–3024 |publisher=[[United States Geological Survey]] |date=May 10, 2005|url=http://pubs.usgs.gov/fs/2005/3024/}}</ref> Eruptions forming even larger calderas are known, such as the [[La Garita Caldera]] in the [[San Juan Mountains]] of [[Colorado]], where the {{convert|5000|km3}} [[Fish Canyon Tuff]] was blasted out in eruptions about 27.8 million years ago.<ref name=livescience>{{cite web | url=http://www.livescience.com/11113-biggest-volcanic-eruption.html|title=What's the Biggest Volcanic Eruption Ever?| publisher=livescience.com | date=10 November 2010 | access-date=2014-02-01}}</ref><ref>{{cite journal |last1=Best |first1=Myron G. |last2=Christiansen |first2=Eric H. |last3=Deino |first3=Alan L. |last4=Gromme |first4=Sherman |last5=Hart |first5=Garret L. |last6=Tingey |first6=David G. |title=The 36–18 Ma Indian Peak–Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions |journal=Geosphere |date=August 2013 |volume=9 |issue=4 |pages=864–950 |doi=10.1130/GES00902.1 |bibcode=2013Geosp...9..864B |doi-access=free }}</ref> {{anchor|Outflow sheet}} The caldera produced by such eruptions is typically filled in with tuff, [[rhyolite]], and other [[igneous rock]]s.<ref name="troll-etal-2000">{{Cite journal|last1=Troll|first1=Valentin R.|last2=Emeleus|first2=C. Henry|last3=Donaldson|first3=Colin H.|date=2000-11-01|title=Caldera formation in the Rum Central Igneous Complex, Scotland|url=https://doi.org/10.1007/s004450000099|journal=Bulletin of Volcanology|language=en|volume=62|issue=4|pages=301–317|doi=10.1007/s004450000099|bibcode=2000BVol...62..301T|s2cid=128985944|issn=1432-0819|url-access=subscription}}</ref> The caldera is surrounded by an '''outflow sheet''' of ash flow tuff (also called an '''ash flow sheet''').<ref>{{cite journal |last1=Best |first1=Myron G. |last2=Christiansen |first2=Eric H. |last3=Deino |first3=Alan L. |last4=Grommé |first4=C. Sherman |last5=Tingey |first5=David G. |title=Correlation and emplacement of a large, zoned, discontinuously exposed ash flow sheet: The 40 Ar/ 39 Ar chronology, paleomagnetism, and petrology of the Pahranagat Formation, Nevada |journal=Journal of Geophysical Research: Solid Earth |date=10 December 1995 |volume=100 |issue=B12 |pages=24593–24609 |doi=10.1029/95JB01690|bibcode=1995JGR...10024593B }}</ref><ref>{{cite journal |last1=Cook |first1=Geoffrey W. |last2=Wolff |first2=John A. |last3=Self |first3=Stephen |title=Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico |journal=Bulletin of Volcanology |date=February 2016 |volume=78 |issue=2 |pages=10 |doi=10.1007/s00445-016-1000-0|bibcode=2016BVol...78...10C |s2cid=130061015 }}</ref> If magma continues to be injected into the collapsed magma chamber, the center of the caldera may be uplifted in the form of a ''[[resurgent dome]]'' such as is seen at the [[Valles Caldera]], [[Lake Toba]], the San Juan volcanic field,<ref name="smith-bailey-1968">{{cite journal |last1=Smith |first1=Robert L. |last2=Bailey |first2=Roy A. |title=Resurgent Cauldrons |journal=Geological Society of America Memoirs |date=1968 |volume=116 |pages=613–662 |doi=10.1130/MEM116-p613}}</ref> [[Galán|Cerro Galán]],<ref>{{cite journal |last1=Grocke |first1=Stephanie B. |last2=Andrews |first2=Benjamin J. |last3=de Silva |first3=Shanaka L. |title=Experimental and petrological constraints on long-term magma dynamics and post-climactic eruptions at the Cerro Galán caldera system, NW Argentina |journal=Journal of Volcanology and Geothermal Research |date=November 2017 |volume=347 |pages=296–311 |doi=10.1016/j.jvolgeores.2017.09.021|bibcode=2017JVGR..347..296G |doi-access=free }}</ref> [[Yellowstone Caldera|Yellowstone]],<ref>{{cite journal |last1=Tizzani |first1=P. |last2=Battaglia |first2=M. |last3=Castaldo |first3=R. |last4=Pepe |first4=A. |last5=Zeni |first5=G. |last6=Lanari |first6=R. |title=Magma and fluid migration at Yellowstone Caldera in the last three decades inferred from InSAR, leveling, and gravity measurements |journal=Journal of Geophysical Research: Solid Earth |date=April 2015 |volume=120 |issue=4 |pages=2627–2647 |doi=10.1002/2014JB011502|bibcode=2015JGRB..120.2627T |doi-access=free |hdl=11573/779666 |hdl-access=free }}</ref> and many other calderas.<ref name="smith-bailey-1968"/> Because a silicic caldera may erupt hundreds or even thousands of cubic kilometers of material in a single event, it can cause catastrophic environmental effects. Even small caldera-forming eruptions, such as [[Krakatoa]] in 1883<ref>{{cite journal |last1=Schaller |first1=N |last2=Griesser |first2=T |last3=Fischer |first3=A |last4=Stickler |first4=A. and |last5=Brönnimann |first5=S. |year=2009 |title=Climate effects of the 1883 Krakatoa eruption: Historical and present perspectives |journal=VJSCHR. Natf. Ges. Zürich |volume=154 |pages=31–40 |url=https://www.researchgate.net/publication/255700466 |access-date=29 December 2020}}</ref> or [[Mount Pinatubo]] in 1991,<ref>{{cite journal |last1=Robock |first1=A. |title=PINATUBO ERUPTION: The Climatic Aftermath |journal=Science |date=15 February 2002 |volume=295 |issue=5558 |pages=1242–1244 |doi=10.1126/science.1069903|pmid=11847326 |s2cid=140578928 }}</ref> may result in significant local destruction and a noticeable [[Volcanic winter|drop in temperature]] around the world. Large calderas may have even greater effects. The ecological effects of the eruption of a large caldera can be seen in the record of the [[Lake Toba]] eruption in [[Indonesia]]. At some points in [[geological time]], rhyolitic calderas have appeared in distinct clusters. The remnants of such clusters may be found in places such as the [[Eocene]] [[Rùm#Geology|Rum]] Complex of Scotland,<ref name="troll-etal-2000"/> the San Juan Mountains of Colorado (formed during the [[Oligocene]], [[Miocene]], and [[Pliocene]] epochs) or the [[Saint Francois Mountain Range]] of [[Missouri]] (erupted during the [[Proterozoic]] eon).<ref>{{cite book |last1=Kisvarsanyi |first1=Eva B. |title=Geology of the Precambrian St. Francois Terrane, Southeastern Missouri |date=1981 |publisher=Missouri Department of Natural Resources, Division of Geology and Land Survey |oclc=256041399 }}{{page needed|date=November 2019}}</ref> ====Valles==== [[File:Valle Caldera, New Mexico.jpg|thumb|Valle Caldera, New Mexico]] {{Main|Valles Caldera}} For their 1968 paper<ref name="smith-bailey-1968"/> that first introduced the concept of a resurgent caldera to geology,<ref name="cole-etal-2005"/> R.L. Smith and R.A. Bailey chose the Valles caldera as their model. Although the Valles caldera is not unusually large, it is relatively young (1.25 million years old) and unusually well preserved,<ref>{{cite journal |last1=Goff |first1=Fraser |last2=Gardner |first2=Jamie N. |last3=Reneau |first3=Steven L. |last4=Kelley |first4=Shari A. |last5=Kempter |first5=Kirt A. |last6=Lawrence |first6=John R. |title=Geologic map of the Valles caldera, Jemez Mountains, New Mexico |journal=New Mexico Bureau of Geology and Mineral Resources Map Series |date=2011 |volume=79 |bibcode=2011AGUFM.V13C2606G |url=https://geoinfo.nmt.edu/publications/maps/geologic/gm/79/ |access-date=18 May 2020}}</ref> and it remains one of the best studied examples of a resurgent caldera.<ref name="cole-etal-2005"/> The ash flow tuffs of the Valles caldera, such as the [[Bandelier Tuff]], were among the first to be thoroughly characterized.<ref>{{cite journal |last1=Ross |first1=Clarence S. |last2=Smith |first2=Robert L. |title=Ash-flow tuffs: Their origin, geologic relations, and identification |journal=U.S. Geological Survey Professional Paper |series=Professional Paper |date=1961 |volume=366 |page=7 |doi=10.3133/pp366|doi-access=free |bibcode=1961usgs.rept....7R |hdl=2027/ucbk.ark:/28722/h26b1t |hdl-access=free }}</ref> ====Toba==== {{Main|Lake Toba|Toba catastrophe theory}} About 74,000 years ago, this Indonesian volcano released about {{convert|2800|km3}} [[dense-rock equivalent]] of ejecta. This was the largest known eruption during the ongoing [[Quaternary]] period (the last 2.6 million years) and the largest known explosive eruption during the last 25 million years. In the late 1990s, [[anthropologist]] Stanley Ambrose<ref>{{cite web | url=http://www.anthro.illinois.edu/people/ambrose | title=Stanley Ambrose page | publisher=University of Illinois at Urbana-Champaign | access-date=20 March 2014}}</ref> proposed that a [[volcanic winter]] induced by this eruption reduced the human population to about 2,000–20,000 individuals, resulting in a [[population bottleneck]]. More recently, [[Lynn Jorde]] and [[Henry Harpending]] proposed that the human species was reduced to approximately 5,000–10,000 people.<ref>[http://www.bbc.co.uk/science/horizon/1999/supervolcanoes_script.shtml Supervolcanoes], [[BBC2]], 3 February 2000</ref> There is no direct evidence, however, that either theory is correct, and there is no evidence for any other animal decline or extinction, even in environmentally sensitive species.<ref>{{cite journal |last1=Gathorne-Hardy |first1=F.J |last2=Harcourt-Smith |first2=W.E.H |title=The super-eruption of Toba, did it cause a human bottleneck? |journal=Journal of Human Evolution |date=September 2003 |volume=45 |issue=3 |pages=227–230 |doi=10.1016/s0047-2484(03)00105-2 |pmid=14580592 |bibcode=2003JHumE..45..227G }}</ref> There is evidence that human habitation continued in [[India]] after the eruption.<ref>{{cite journal |last1=Petraglia |first1=M. |last2=Korisettar |first2=R. |last3=Boivin |first3=N. |last4=Clarkson |first4=C. |last5=Ditchfield |first5=P. |last6=Jones |first6=S. |last7=Koshy |first7=J. |last8=Lahr |first8=M. M. |last9=Oppenheimer |first9=C. |last10=Pyle |first10=D. |last11=Roberts |first11=R. |last12=Schwenninger |first12=J.-L. |last13=Arnold |first13=L. |last14=White |first14=K. |title=Middle Paleolithic Assemblages from the Indian Subcontinent Before and After the Toba Super-Eruption |journal=Science |date=6 July 2007 |volume=317 |issue=5834 |pages=114–116 |doi=10.1126/science.1141564 |pmid=17615356 |bibcode=2007Sci...317..114P |s2cid=20380351 }}</ref> [[File:La Cumbre - ISS.JPG|thumb|right|Satellite photograph of the summit caldera on [[Fernandina Island]] in the [[Galápagos Islands|Galápagos]] [[archipelago]]]] [[File:Nemrut Caldera aerial.jpg|thumb|right|Oblique aerial photo of [[Nemrut (volcano)|Nemrut Caldera]], Van Lake, Eastern Turkey]] ===Non-explosive calderas=== [[File:Iss038e012569, Caldera Sollipulli.jpg|thumb|[[Sollipulli]] Caldera, located in central Chile near the border with Argentina, filled with ice. The volcano is in the southern Andes Mountains within Chile's Parque Nacional Villarica.<ref>{{cite web | url=http://earthobservatory.nasa.gov/IOTD/view.php?id=82676 | title=EO | website=Earthobservatory.nasa.gov | access-date=20 March 2014| date=2013-12-23 }}</ref>]] Some volcanoes, such as the large [[shield volcano]]es [[Kīlauea]] and [[Mauna Loa]] on the island of [[Hawaii (island)|Hawaii]], form calderas in a different fashion. The magma feeding these volcanoes is [[basalt]], which is silica poor. As a result, the magma is much less [[Viscosity|viscous]] than the magma of a rhyolitic volcano, and the magma chamber is drained by large lava flows rather than by explosive events. The resulting calderas are also known as subsidence calderas and can form more gradually than explosive calderas. For instance, the caldera atop [[Fernandina Island]] collapsed in 1968 when parts of the caldera floor dropped {{convert|350|m}}.<ref name=gvp>{{cite gvp | vn=353010&vtab=Photos | title=Fernandina: Photo}}</ref> ==Extraterrestrial calderas== Since the early 1960s, it has been known that volcanism has occurred on other planets and moons in the [[Solar System]]. Through the use of crewed and uncrewed spacecraft, volcanism has been discovered on [[Venus]], [[Mars]], the [[Moon]], and [[Io (moon)|Io]], a satellite of [[Jupiter]]. None of these worlds have [[plate tectonics]], which contributes approximately 60% of the Earth's volcanic activity (the other 40% is attributed to [[hotspot (geology)|hotspot]] volcanism).<ref name = "Wilson">{{Cite book | last1 = Parfitt | first1 = L. | last2 = Wilson | first2 = L. | title = Fundamentals of Physical Volcanology | url = https://archive.org/details/fundamentalsphys00parf | url-access = limited | place = Malden, MA | publisher = [[Blackwell Publishing]]| date= 19 February 2008| chapter = Volcanism on Other Planets| pages = [https://archive.org/details/fundamentalsphys00parf/page/n211 190]–212| chapter-url = http://google.com/books?id=ptpCiNkwLj8C&printsec=frontcover| isbn = 978-0-632-05443-5 | oclc = 173243845}}</ref> Caldera structure is similar on all of these planetary bodies, though the size varies considerably. The average caldera diameter on Venus is {{cvt|68|km|||}}. The average caldera diameter on Io is close to {{cvt|40|km|||}}, and the mode is {{cvt|6|km|||}}; [[Tvashtar Paterae]] is likely the largest caldera with a diameter of {{cvt|290|km|||}}. The average caldera diameter on Mars is {{cvt|48|km|||}}, smaller than Venus. Calderas on Earth are the smallest of all planetary bodies and vary from {{cvt|1.6–80|km|0||}} as a maximum.<ref>{{cite book |doi=10.1016/S1871-644X(07)00008-3 |chapter=Magma-Chamber Geometry, Fluid Transport, Local Stresses and Rock Behaviour During Collapse Caldera Formation |title=Caldera Volcanism: Analysis, Modelling and Response |volume=10 |pages=313–349 |series=Developments in Volcanology |year=2008 |last1=Gudmundsson |first1=Agust |isbn=978-0-444-53165-0 }}</ref> ===The Moon=== {{Further|Volcanism on the Moon}} The [[Moon]] has an outer shell of low-density crystalline rock that is a few hundred kilometers thick, which formed due to a rapid creation. The craters of the Moon have been well preserved through time and were once thought to have been the result of extreme volcanic activity, but are currently believed to have been formed by meteorites, nearly all of which took place in the first few hundred million years after the Moon formed. Around 500 million years afterward, the Moon's mantle was able to be extensively melted due to the decay of radioactive elements. Massive basaltic eruptions took place generally at the base of large impact craters. Also, eruptions may have taken place due to a magma reservoir at the base of the crust. This forms a dome, possibly the same morphology of a shield volcano where calderas universally are known to form.<ref name = "Wilson"/> Although caldera-like structures are rare on the Moon, they are not completely absent. The [[Compton–Belkovich Thorium Anomaly|Compton-Belkovich Volcanic Complex]] on the [[far side of the Moon]] is thought to be a caldera, possibly an [[Pyroclastic flow|ash-flow]] caldera.<ref name="Compton-Belkovich">{{cite journal |last1=Chauhan |first1=M. |last2=Bhattacharya |first2=S. |last3=Saran |first3=S. |last4=Chauhan |first4=P. |last5=Dagar |first5=A. |title=Compton–Belkovich Volcanic Complex (CBVC): An ash flow caldera on the Moon |journal=Icarus |date=June 2015 |volume=253 |pages=115–129 |doi=10.1016/j.icarus.2015.02.024 |bibcode=2015Icar..253..115C }}</ref> ===Mars=== {{Further|Volcanism on Mars}} The volcanic activity of [[Mars]] is concentrated in two major provinces: [[Tharsis]] and [[Elysium (volcanic province)|Elysium]]. Each province contains a series of giant shield volcanoes that are similar to what we see on Earth and likely are the result of mantle [[Hotspot (geology)|hot spots]]. The surfaces are dominated by lava flows, and all have one or more collapse calderas.<ref name = "Wilson"/> Mars has the tallest volcano in the Solar System, [[Olympus Mons]], which is more than three times the height of Mount Everest, with a diameter of 520 km (323 miles). The summit of the mountain has six nested calderas.<ref>Philip's World Reference Atlas including Stars and Planets {{ISBN|0-7537-0310-6}} Publishing House Octopus publishing Group Ltd p. 9</ref> ===Venus=== {{Further|Volcanism on Venus}} Because there is no [[plate tectonics]] on [[Venus]], heat is mainly lost by conduction through the [[lithosphere]]. This causes enormous lava flows, accounting for 80% of Venus' surface area. Many of the mountains are large [[shield volcano]]es that range in size from {{cvt|150–400|km|round=5||}} in diameter and {{cvt|2–4|km|||}} high. More than 80 of these large shield volcanoes have summit calderas averaging {{cvt|60|km|||}} across.<ref name = "Wilson"/> ===Io=== {{Further|Volcanism on Io}} Io, unusually, is heated by solid flexing due to the [[Tidal force|tidal]] influence of [[Jupiter]] and Io's [[orbital resonance]] with neighboring large moons [[Europa (moon)|Europa]] and [[Ganymede (moon)|Ganymede]], which keep its orbit slightly [[orbital eccentricity|eccentric]]. Unlike any of the planets mentioned, Io is continuously volcanically active. For example, the NASA ''[[Voyager 1]]'' and ''[[Voyager 2]]'' spacecraft detected nine erupting volcanoes while passing Io in 1979. Io has many calderas with diameters tens of kilometers across.<ref name = "Wilson"/> ==List of volcanic calderas== {{See also|Category:Calderas}} ===Africa=== [[File:Nabro and Mallahle Volcanoes-NASA.jpg|thumb|right|NASA [[False-colour]] topographical relief image of Nabro (top) and Mallahle volcanic calderas (centre left)]] * [[Ngorongoro Crater]] (Tanzania) * [[Menengai]] Crater (Kenya) * [[Mount Elgon]] (Uganda/Kenya) * [[Mount Fogo]] (Cape Verde) * [[Mount Longonot]] (Kenya) * [[Mount Meru (Tanzania)|Mount Meru]] (Tanzania) * [[Erta Ale]] (Ethiopia) * [[Nabro Volcano]] (Eritrea) * [[Mallahle]] (Eritrea) * ''See ''Europe'' for calderas in the Canary Islands and the Azores'' ===Antarctica=== [[File:Deception island.jpg|thumb|Satellite image of [[Deception Island]] by [[Sentinel-2]] (March 2023)]] * [[Deception Island]] * [[Kemp Caldera]] ===Asia=== [[File:Mount Tambora Volcano, Sumbawa Island, Indonesia.jpg|thumb|Caldera of [[Mount Tambora]]]] [[File:Pinatubo92pinatubo caldera crater lake.jpg|thumb|[[Mount Pinatubo]], Philippines]] *[[China]] ** Dakantou Caldera (大墈头) (Shanhuyan Village, Taozhu Town, [[Linhai]], Zhejiang) ** Ma'anshan Caldera (马鞍山) (Shishan Town (石山镇), [[Xiuying District|Xiuying]], Hainan) ** Yiyang Caldera (宜洋) (Shuangxi Town (双溪镇宜洋村), [[Pingnan County, Fujian]]) * [[Indonesia]] ** [[Mount Batur|Batur]] ([[Bali]]) ** [[Krakatoa]] ([[Sunda Strait]]) ** [[Lake Maninjau]] ([[Sumatra]]) ** [[Lake Toba]] (Sumatra) ** [[Mount Rinjani]] ([[Lombok]]) ** [[Mount Tondano]] ([[Sulawesi]]) ** [[Mount Tambora]] ([[Sumbawa]]) ** [[Mount Bromo|Tengger Caldera]] ([[Java Island|Java]]) *[[Japan]] ** [[Aira Caldera]] ([[Kagoshima Prefecture]]) ** [[Lake Kussharo|Kussharo]] ([[Hokkaido]]) ** [[Lake Kuttara|Kuttara]] (Hokkaido) ** [[Lake Mashū|Mashū]] (Hokkaido) ** [[Aso Caldera]], [[Mount Aso]] ([[Kumamoto Prefecture]]) ** [[Kikai Caldera]] (Kagoshima Prefecture) ** [[Lake Towada|Towada]] ([[Aomori Prefecture]]) ** [[Lake Tazawa|Tazawa]] ([[Akita Prefecture]]) ** [[Mount Hakone|Hakone]] ([[Kanagawa Prefecture]]) *[[Korean Peninsula]] ** [[Mount Halla]] ([[Jeju Province|Jeju-do]], South Korea) ** [[Heaven Lake]] ([[Baekdu Mountain]], North Korea/[[Changbai Mountains]], China) *[[Philippines]] ** [[Apolaki Caldera]] ([[Benham Rise]]) ** [[Corregidor Caldera]] (Manila Bay) ** [[Mount Pinatubo]] ([[Luzon]]) ** [[Taal Volcano]] (Luzon) ** [[Laguna Caldera]] (Luzon) ** [[Mount Bulusan|Irosin Caldera]] (Luzon) *[[Turkey]] ** [[Derik]] ([[Mardin]]) ** [[Nemrut (volcano)]] * [[Russia]] [[File:Yankicha.jpg|thumb|Caldera of the island [[Ushishir|Yankicha/Ushishir]], [[Kuril Islands]]]] ** [[Akademia Nauk (volcano)|Akademia Nauk]] ([[Kamchatka Peninsula]]) ** [[Golovnin]] ([[Kuril Islands]]) ** [[Karymsky (volcano)|Karymsky Caldera]] ([[Kamchatka Peninsula]]) ** [[Karymshina]] ([[Kamchatka Peninsula]]) ** [[Khangar]] ([[Kamchatka Peninsula]]) ** [[Ksudach]] ([[Kamchatka Peninsula]]) ** [[Kurile Lake]] ([[Kamchatka Peninsula]]) ** [[Pauzhetka caldera]] (hosts Kurile Lake caldera, [[Kamchatka Peninsula]])<ref name=volc>{{cite web |title = Diky Greben|url = https://volcano.si.edu/volcano.cfm?vn=300022 |date=2022-03-15 }}</ref> ** [[Lvinaya Past]] ([[Kuril Islands]]) ** [[Tao-Rusyr Caldera]] ([[Kuril Islands]]) ** [[Uzon]] ([[Kamchatka Peninsula]]) ** [[Zavaritski Caldera]] ([[Kuril Islands]]) ** [[Ushishir|Yankicha/Ushishir]] ([[Kuril Islands]]) ** Chegem Caldera ([[Kabardino-Balkarian Republic]], [[North Caucasus]]) ===Europe=== [[File:Santorini 3D version 1.gif|thumb|3D [[Computer-generated imagery|CGI]] [[aerial view|aerial spinning view]] over [[Santorini]], Greece]] [[File:Laacher_See_-_Luftaufnahme.jpg|thumb|Aerial view of the [[Laacher See]], Germany]] [[File:Cratere degli Astroni visto dall'alto.jpg|thumb|View of the [[Phlegraean Fields]] near [[Naples]], Italy]] [[File:Caldeira Faial ca 580 m.ü.NN. Kesselboden.JPG|thumb|''Caldeira do Faial'' on the [[Caldeira Volcano]], [[Faial Island]], [[Azores]]]] * [[Georgia (country)|Georgia]] ** [[Bakuriani|Bakuriani/Didveli Caldera]] ** [[Samsari]] * [[Germany]] ** [[Laacher See]] * [[Greece]] ** [[Santorini]] ** [[Nisyros]] * [[Iceland]] ** [[Askja]] ** [[Grímsvötn]] ** [[Bárðarbunga]] ** [[Katla volcano|Katla]] ** [[Krafla]] * [[Italy]] ** [[Phlegraean Fields]] ** [[Lake Bracciano]] ** [[Lake Bolsena]] ** [[Mount Somma]] which contains [[Mount Vesuvius]] * [[Portugal]] ** [[Lagoa das Sete Cidades]] & [[Furnas#Physical geography|Furnas]] ([[São Miguel Island|São Miguel]], [[the Azores]]) ** Caldeira do Faial ([[Faial Island|Faial]]) ** [[Estreitinho|Caldeirão do Corvo]] ([[Corvo Island|Corvo]]) * [[United Kingdom]] ** [[Glen Coe]] (Scotland) ** [[Scafells|Scafell Caldera]] ([[Lake District]], England)<ref>{{Cite web | url=http://earthwise.bgs.ac.uk/index.php/Borrowdale_Volcanic_Group,_upper_silicic_eruptive_phase,_Caradoc_magmatism,_Ordovician,_Northern_England | title=Borrowdale Volcanic Group, upper silicic eruptive phase, Caradoc magmatism, Ordovician, Northern England – Earthwise}}</ref> * [[Slovakia]] ** [[Banská Štiavnica]] * [[Spain]] ** [[Teide|Las Cañadas]] ([[Tenerife]], [[Canary Islands]]) ===North and Central America=== [[File:Teopan.jpg|thumb|[[Coatepeque Caldera]], El Salvador crater lake]] [[File:Crater lake oregon.jpg|thumb|[[Crater Lake]], Oregon, formed around 5,680 BC]] [[File:Aniakchak-caldera alaska.jpg|thumb|[[Mount Aniakchak|Aniakchak]]-caldera, Alaska]] * [[Canada]] ** [[Silverthrone Caldera]] ([[British Columbia]]) ** [[Mount Edziza]] (British Columbia) ** [[Bennett Lake Volcanic Complex]] (British Columbia/[[Yukon]]) ** [[Mount Pleasant Caldera]] ([[New Brunswick]]) ** [[Sturgeon Lake Caldera]] ([[Ontario]]) ** [[Mount Skukum Volcanic Complex]] (Yukon) ** [[Blake River Megacaldera Complex]] ([[Quebec]]/Ontario) ** [[New Senator Caldera]] (Quebec) ** [[Misema Caldera]] (Ontario/Quebec) ** [[Noranda Caldera]] (Quebec) * [[Mexico]] ** La primavera Caldera ([[Jalisco]]) ** Amealco Caldera ([[Querétaro]]) ** Las Cumbres Caldera ([[Veracruz]]-[[Puebla]]) ** Los Azufres Caldera ([[Michoacán]]) ** Los Humeros Caldera (Veracruz-Puebla) ** Mazahua Caldera ([[State of Mexico|Mexico State]]) * [[El Salvador]] ** [[Lake Ilopango]] ** [[Lake Coatepeque]] * [[Guatemala]] ** [[Lake Amatitlán]] ** [[Lake Atitlán]] ** [[Quetzaltenango|Xela]] ** [[Santa Catarina Barahona|Barahona]] * [[Nicaragua]] ** [[Masaya Volcano|Masaya]] (Nicaragua) * [[United States]] ** [[Mount Aniakchak]] ([[Aniakchak National Monument and Preserve]]) ([[Alaska]]) ** [[Cochetopa Dome|Cochetopa Caldera]] ([[Colorado]]) ** [[Crater Lake]] on [[Mount Mazama]] ([[Crater Lake National Park]], [[Oregon]]) ** [[Mount Katmai]] (Alaska) ** [[Kīlauea]] ([[Hawaii]]) ** [[Mauna Loa]] ([[Hawaii]]) ** [[La Garita Caldera]] ([[Colorado]]) ** [[Long Valley Caldera|Long Valley]] ([[California]]) ** [[Henry's Fork Caldera]] ([[Idaho]]) ** [[Island Park Caldera]] (Idaho, [[Wyoming]]) ** [[Newberry Volcano]] (Oregon) ** [[McDermitt Caldera]] (Oregon) ** [[Medicine Lake Volcano]] (California) ** [[Mount Okmok]] (Alaska) ** [[Valles Caldera]] ([[New Mexico]]) ** [[Yellowstone Caldera]] (Wyoming) ===Indian Ocean=== * [[Cirque de Cilaos]] (Réunion) * [[Cirque de Mafate]] (Réunion) * [[Cirque de Salazie]] (Réunion) * [[Enclos Fouqué]] (Réunion) ===Oceania=== [[File:Mokuaweoweo from the air.gif|thumb|Mokuʻāweoweo, [[Mauna Loa]]'s summit caldera, covered in snow]] [[File:Lake taupo landsat.jpg|thumb|right|Satellite photo of [[Lake Taupō]]]] * [[Australia]] **[[Cerberean Cauldron]]<ref>{{cite journal |last1=Clemens |first1=J.D. |last2=Birch |first2=W.D. |title=Assembly of a zoned volcanic magma chamber from multiple magma batches: The Cerberean Cauldron, Marysville Igneous Complex, Australia |journal=Lithos |date=December 2012 |volume=155 |pages=272–288 |doi=10.1016/j.lithos.2012.09.007 |bibcode=2012Litho.155..272C }}</ref> ** [[Mount Warning]] ** [[Prospect Hill (New South Wales)|Prospect Hill]] *[[Hawaii]] ** [[Kilauea]] ([[Hawaii]], US) ** [[Mauna Loa|Moku‘āweoweo Caldera]] on [[Mauna Loa]] (Hawaii, US) *[[New Zealand]] ** [[Kapenga Caldera|Kapenga]] ** [[Lake Ohakuri]] ** [[Lake Ōkataina|Lake Okataina]] ** [[Lake Rotorua]] ** [[Lake Taupō]] ** [[Maroa Caldera|Maroa]] ** [[Otago Harbour]] ** [[Reporoa caldera]] *[[Papua New Guinea]] ** [[Dakataua]] *[[Polynesia]] ** [[Rano Kau]] ([[Easter Island]], Chile) ===South America=== [[File:Sollipulli Caldera, Southern Chile.jpg|thumb|Aerial photograph of [[Sollipulli]] caldera, looking east]] * [[Argentina]] ** [[Aguas Calientes caldera|Aguas Calientes]], [[Salta Province]] ** [[Caldera del Atuel]], [[Mendoza Province]] ** [[Galán]], [[Catamarca Province]] * [[Bolivia]] ** [[Pastos Grandes]] * [[Colombia]] ** Arenas crater caldera, [[Nevado del Ruiz]] volcano, [[Caldas Department]] ** Laguna Verde caldera, [[Azufral]] volcano, [[Narino Department]] * [[Chile]] ** [[Chaitén (volcano)|Chaitén]] ** [[Puyehue-Cordón Caulle|Cordillera Nevada Caldera]] ** [[Laguna del Maule (volcano)|Laguna del Maule]] ** [[Pacana Caldera]] ** [[Sollipulli]] * [[Ecuador]] ** [[Pululahua Geobotanical Reserve]] ** [[Cuicocha]] ** [[Quilotoa]] ** [[Fernandina Island]], [[Galápagos Islands]] ** [[Sierra Negra (Galápagos)]] ** [[Chacana]] Caldera ==Extraterrestrial volcanic calderas== * [[Mars]] ** [[Olympus Mons]] caldera * [[Venus]] ** [[Maat Mons]] caldera ==Erosion calderas== * Americas ** [[Guaichane-Mamuta]] (Chile) ** [[Mount Tehama]] ([[California]], US) * Europe ** [[Caldera de Taburiente]] (Spain) * Oceania ** [[Tweed Volcano|Tweed Valley]] ([[New South Wales]], [[Queensland]], Australia) * Asia ** Chegem Caldera ([[Kabardino-Balkarian Republic]], Northern Caucasus Region, Russia) ** [[Taal volcano]] (Philippines) [[Batangas Province]] ==See also== * {{annotated link|Complex volcano}} * {{annotated link|Maar}} * {{annotated link|Somma volcano}} * {{annotated link|Supervolcano}} * {{annotated link|Volcanic Explosivity Index}} == Explanatory notes == {{Reflist|group=note}} ==References== {{Reflist}} ==Further reading== * {{cite journal|last1=Clough|first1=C. T.|last2=Maufe|first2=H. B.|last3=Bailey|first3=E. B.|title=The Cauldron-Subsidence of Glen Coe, and the Associated Igneous Phenomena|journal=Quarterly Journal of the Geological Society|date=1909|volume=65|issue=1–4|pages=611–78|doi=10.1144/GSL.JGS.1909.065.01-04.35|bibcode=1909QJGS...65..611C |s2cid=129342758|url=https://zenodo.org/record/2346903}} *{{cite book |doi=10.1016/S1871-644X(07)00008-3 |chapter=Magma-Chamber Geometry, Fluid Transport, Local Stresses and Rock Behaviour During Collapse Caldera Formation |title=Caldera Volcanism: Analysis, Modelling and Response |volume=10 |pages=313–349 |series=Developments in Volcanology |year=2008 |last1=Gudmundsson |first1=Agust |isbn=978-0-444-53165-0 }} * Kokelaar, B. P; and Moore, I. D; 2006. ''Glencoe caldera volcano, Scotland''. {{ISBN|9780852725252}}. Pub. British Geological Survey, Keyworth, Nottinghamshire. There is an associated 1:25000 solid geology map. * Lipman, P; 1999. "Caldera". In Haraldur Sigurdsson, ed. ''Encyclopedia of Volcanoes''. [[Academic Press]]. {{ISBN|0-12-643140-X}} *{{cite journal |last1=Williams |first1=Howell |title=Calderas and their origin |journal=University of California Publications Bulletin of the Department of Geological Sciences |date=1941 |volume=25 |pages=239–346 |url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015027553265&view=1up&seq=291 }} ==External links== {{Commons category|Calderas}} {{Wiktionary|caldera}} * [http://volcanoes.usgs.gov/images/pglossary/caldera.php USGS page on calderas] * [https://web.archive.org/web/20110717230952/http://www.volcanodb.com/search.php?type=Caldera List of Caldera Volcanoes] * [https://web.archive.org/web/20070630233550/http://eis.bris.ac.uk/~gljhg/Workgroup/Workgroup_files/Edited-list-publications_calderas-71206.pdf Collection of references on collapse calderas] (43 pages) * [http://www.bigvolcano.com.au/natural/wollum.htm The Caldera of the Tweed Volcano – Australia] * [https://web.archive.org/web/20051216160300/http://host.uniroma3.it/progetti/cev/Web%20CEV%20folder/lagarita.html Largest Explosive Eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado] * [http://www.bbc.co.uk/science/horizon/1999/supervolcanoes_script.shtml Supervolcanoes] * [https://www.youtube.com/watch?v=mIK6l5vNT8o Time-lapse video of Kīlauea caldera collapse, 2018] {{Earth's landforms}} {{Volcanoes}} {{Authority control}} [[Category:Calderas| ]] [[Category:Depressions (geology)]] [[Category:Igneous rocks]] [[Category:Volcanism]] [[Category:Volcanic landforms]] [[Category:Volcanic craters|.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Annotated link
(
edit
)
Template:Authority control
(
edit
)
Template:Cite Dictionary.com
(
edit
)
Template:Cite book
(
edit
)
Template:Cite gvp
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Commons category
(
edit
)
Template:Convert
(
edit
)
Template:Cvt
(
edit
)
Template:Earth's landforms
(
edit
)
Template:Further
(
edit
)
Template:IPAc-en
(
edit
)
Template:ISBN
(
edit
)
Template:Main
(
edit
)
Template:Other uses
(
edit
)
Template:Page needed
(
edit
)
Template:Reflist
(
edit
)
Template:Refn
(
edit
)
Template:Respell
(
edit
)
Template:Rp
(
edit
)
Template:See also
(
edit
)
Template:Sfn
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Use dmy dates
(
edit
)
Template:Volcanoes
(
edit
)
Template:Wikt-lang
(
edit
)
Template:Wiktionary
(
edit
)