Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Canonical basis
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Basis of a type of algebraic structure}} In [[mathematics]], a '''canonical basis''' is a basis of an [[algebraic structure]] that is canonical in a sense that depends on the precise context: * In a [[coordinate space]], and more generally in a [[free module]], it refers to the [[standard basis]] defined by the [[Kronecker delta]]. * In a polynomial ring, it refers to its standard basis given by the [[monomial]]s, <math>(X^i)_i</math>. * For finite extension fields, it means the [[polynomial basis]]. * In [[linear algebra]], it refers to a set of ''n'' linearly independent [[generalized eigenvector]]s of an ''n''×''n'' matrix <math>A</math>, if the set is composed entirely of [[Jordan chain]]s.<ref>{{harvtxt|Bronson|1970|p=196}}</ref> * In [[representation theory]], it refers to the basis of the [[quantum groups]] introduced by Lusztig. ==Representation theory== The canonical basis for the irreducible representations of a quantized enveloping algebra of type <math>ADE</math> and also for the plus part of that algebra was introduced by Lusztig <ref>{{harvtxt|Lusztig|1990}}</ref> by two methods: an algebraic one (using a braid group action and PBW bases) and a topological one (using intersection cohomology). Specializing the parameter <math>q</math> to <math>q=1</math> yields a canonical basis for the irreducible representations of the corresponding simple Lie algebra, which was not known earlier. Specializing the parameter <math>q</math> to <math>q=0</math> yields something like a shadow of a basis. This shadow (but not the basis itself) for the case of irreducible representations was considered independently by Kashiwara;<ref>{{harvtxt|Kashiwara|1990}}</ref> it is sometimes called the [[crystal basis]]. The definition of the canonical basis was extended to the Kac-Moody setting by Kashiwara <ref>{{harvtxt|Kashiwara|1991}}</ref> (by an algebraic method) and by Lusztig <ref>{{harvtxt|Lusztig|1991}}</ref> (by a topological method). There is a general concept underlying these bases: Consider the ring of integral [[Laurent polynomial]]s <math>\mathcal{Z}:=\mathbb{Z}\left[v,v^{-1}\right]</math> with its two subrings <math>\mathcal{Z}^{\pm}:=\mathbb{Z}\left[v^{\pm 1}\right]</math> and the automorphism <math>\overline{\cdot}</math> defined by <math>\overline{v}:=v^{-1}</math>. A ''precanonical structure'' on a free <math>\mathcal{Z}</math>-module <math>F</math> consists of * A ''standard'' basis <math>(t_i)_{i\in I}</math> of <math>F</math>, * An interval finite [[partial order]] on <math>I</math>, that is, <math>(-\infty,i] := \{j\in I \mid j\leq i\}</math> is finite for all <math>i\in I</math>, * A dualization operation, that is, a bijection <math>F\to F</math> of order two that is <math>\overline{\cdot}</math>-[[semilinear map|semilinear]] and will be denoted by <math>\overline{\cdot}</math> as well. If a precanonical structure is given, then one can define the <math>\mathcal{Z}^{\pm}</math> submodule <math display="inline">F^{\pm} := \sum \mathcal{Z}^{\pm} t_j</math> of <math>F</math>. A ''canonical basis of the precanonical structure is then a <math>\mathcal{Z}</math>-basis <math>(c_i)_{i\in I}</math> of <math>F</math> that satisfies:'' * <math>\overline{c_i}=c_i</math> and * <math>c_i \in \sum_{j\leq i} \mathcal{Z}^+ t_j \text{ and } c_i \equiv t_i \mod vF^+</math> for all <math>i\in I</math>. One can show that there exists at most one canonical basis for each precanonical structure.<ref>{{harvtxt|Lusztig|1993|p=194}}</ref> A sufficient condition for existence is that the polynomials <math>r_{ij}\in\mathcal{Z}</math> defined by <math display="inline">\overline{t_j}=\sum_i r_{ij} t_i</math> satisfy <math>r_{ii}=1</math> and <math>r_{ij}\neq 0 \implies i\leq j</math>. A canonical basis induces an isomorphism from <math>\textstyle F^+\cap \overline{F^+} = \sum_i \mathbb{Z}c_i</math> to <math>F^+/vF^+</math>. === Hecke algebras === Let <math>(W,S)</math> be a [[Coxeter group]]. The corresponding [[Iwahori-Hecke algebra]] <math>H</math> has the standard basis <math>(T_w)_{w\in W}</math>, the group is partially ordered by the [[Bruhat order]] which is interval finite and has a dualization operation defined by <math>\overline{T_w}:=T_{w^{-1}}^{-1}</math>. This is a precanonical structure on <math>H</math> that satisfies the sufficient condition above and the corresponding canonical basis of <math>H</math> is the [[Kazhdan–Lusztig basis]] : <math>C_w' = \sum_{y\leq w} P_{y,w}(v^2) T_w</math> with <math>P_{y,w}</math> being the [[Kazhdan–Lusztig polynomial]]s. ==Linear algebra== If we are given an ''n'' × ''n'' [[matrix (mathematics)|matrix]] <math>A</math> and wish to find a matrix <math>J</math> in [[Jordan normal form]], [[matrix similarity|similar]] to <math>A</math>, we are interested only in sets of [[linearly independent]] generalized eigenvectors. A matrix in Jordan normal form is an "almost diagonal matrix," that is, as close to diagonal as possible. A [[diagonal matrix]] <math>D</math> is a special case of a matrix in Jordan normal form. An [[eigenvector|ordinary eigenvector]] is a special case of a generalized eigenvector. Every ''n'' × ''n'' matrix <math>A</math> possesses ''n'' linearly independent generalized eigenvectors. Generalized eigenvectors corresponding to distinct [[eigenvalues]] are linearly independent. If <math>\lambda</math> is an eigenvalue of <math>A</math> of [[algebraic multiplicity]] <math>\mu</math>, then <math>A</math> will have <math>\mu</math> linearly independent generalized eigenvectors corresponding to <math>\lambda</math>. For any given ''n'' × ''n'' matrix <math>A</math>, there are infinitely many ways to pick the ''n'' linearly independent generalized eigenvectors. If they are chosen in a particularly judicious manner, we can use these vectors to show that <math>A</math> is similar to a matrix in Jordan normal form. In particular, '''Definition:''' A set of ''n'' linearly independent generalized eigenvectors is a '''canonical basis''' if it is composed entirely of Jordan chains. Thus, once we have determined that a generalized eigenvector of [[generalized eigenvector#Overview and definition|rank]] ''m'' is in a canonical basis, it follows that the ''m'' − 1 vectors <math> \mathbf x_{m-1}, \mathbf x_{m-2}, \ldots , \mathbf x_1 </math> that are in the Jordan chain generated by <math> \mathbf x_m </math> are also in the canonical basis.<ref>{{harvtxt|Bronson|1970|pp=196,197}}</ref> ===Computation=== Let <math> \lambda_i </math> be an eigenvalue of <math>A</math> of algebraic multiplicity <math> \mu_i </math>. First, find the [[rank (linear algebra)|ranks]] (matrix ranks) of the matrices <math> (A - \lambda_i I), (A - \lambda_i I)^2, \ldots , (A - \lambda_i I)^{m_i} </math>. The integer <math>m_i</math> is determined to be the ''first integer'' for which <math> (A - \lambda_i I)^{m_i} </math> has rank <math>n - \mu_i </math> (''n'' being the number of rows or columns of <math>A</math>, that is, <math>A</math> is ''n'' × ''n''). Now define :<math> \rho_k = \operatorname{rank}(A - \lambda_i I)^{k-1} - \operatorname{rank}(A - \lambda_i I)^k \qquad (k = 1, 2, \ldots , m_i).</math> The variable <math> \rho_k </math> designates the number of linearly independent generalized eigenvectors of rank ''k'' (generalized eigenvector rank; see [[generalized eigenvector#Overview and definition|generalized eigenvector]]) corresponding to the eigenvalue <math> \lambda_i </math> that will appear in a canonical basis for <math>A</math>. Note that :<math> \operatorname{rank}(A - \lambda_i I)^0 = \operatorname{rank}(I) = n .</math> Once we have determined the number of generalized eigenvectors of each rank that a canonical basis has, we can obtain the vectors explicitly (see [[Generalized eigenvector#Computation of generalized eigenvectors|generalized eigenvector]]).<ref>{{harvtxt|Bronson|1970|pp=197,198}}</ref> ===Example=== This example illustrates a canonical basis with two Jordan chains. Unfortunately, it is a little difficult to construct an interesting example of low order.<ref>{{harvtxt|Nering|1970|pp=122,123}}</ref> The matrix :<math>A = \begin{pmatrix} 4 & 1 & 1 & 0 & 0 & -1 \\ 0 & 4 & 2 & 0 & 0 & 1 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}</math> has eigenvalues <math> \lambda_1 = 4 </math> and <math> \lambda_2 = 5 </math> with algebraic multiplicities <math> \mu_1 = 4 </math> and <math> \mu_2 = 2 </math>, but [[geometric multiplicity|geometric multiplicities]] <math> \gamma_1 = 1 </math> and <math> \gamma_2 = 1 </math>. For <math> \lambda_1 = 4,</math> we have <math> n - \mu_1 = 6 - 4 = 2, </math> :<math> (A - 4I) </math> has rank 5, :<math> (A - 4I)^2 </math> has rank 4, :<math> (A - 4I)^3 </math> has rank 3, :<math> (A - 4I)^4 </math> has rank 2. Therefore <math>m_1 = 4.</math> :<math> \rho_4 = \operatorname{rank}(A - 4I)^3 - \operatorname{rank}(A - 4I)^4 = 3 - 2 = 1,</math> :<math> \rho_3 = \operatorname{rank}(A - 4I)^2 - \operatorname{rank}(A - 4I)^3 = 4 - 3 = 1,</math> :<math> \rho_2 = \operatorname{rank}(A - 4I)^1 - \operatorname{rank}(A - 4I)^2 = 5 - 4 = 1,</math> :<math> \rho_1 = \operatorname{rank}(A - 4I)^0 - \operatorname{rank}(A - 4I)^1 = 6 - 5 = 1.</math> Thus, a canonical basis for <math>A</math> will have, corresponding to <math> \lambda_1 = 4,</math> one generalized eigenvector each of ranks 4, 3, 2 and 1. For <math> \lambda_2 = 5,</math> we have <math> n - \mu_2 = 6 - 2 = 4, </math> :<math> (A - 5I) </math> has rank 5, :<math> (A - 5I)^2 </math> has rank 4. Therefore <math>m_2 = 2.</math> :<math> \rho_2 = \operatorname{rank}(A - 5I)^1 - \operatorname{rank}(A - 5I)^2 = 5 - 4 = 1,</math> :<math> \rho_1 = \operatorname{rank}(A - 5I)^0 - \operatorname{rank}(A - 5I)^1 = 6 - 5 = 1.</math> Thus, a canonical basis for <math>A</math> will have, corresponding to <math> \lambda_2 = 5,</math> one generalized eigenvector each of ranks 2 and 1. A canonical basis for <math>A</math> is :<math> \left\{ \mathbf x_1, \mathbf x_2, \mathbf x_3, \mathbf x_4, \mathbf y_1, \mathbf y_2 \right\} = \left\{ \begin{pmatrix} -4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -27 \\ -4 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 25 \\ -25 \\ -2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 36 \\ -12 \\ -2 \\ 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -8 \\ -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}. </math> <math> \mathbf x_1 </math> is the ordinary eigenvector associated with <math> \lambda_1 </math>. <math> \mathbf x_2, \mathbf x_3 </math> and <math> \mathbf x_4 </math> are generalized eigenvectors associated with <math> \lambda_1 </math>. <math> \mathbf y_1 </math> is the ordinary eigenvector associated with <math> \lambda_2 </math>. <math> \mathbf y_2 </math> is a generalized eigenvector associated with <math> \lambda_2 </math>. A matrix <math>J</math> in Jordan normal form, similar to <math>A</math> is obtained as follows: :<math> M = \begin{pmatrix} \mathbf x_1 & \mathbf x_2 & \mathbf x_3 & \mathbf x_4 & \mathbf y_1 & \mathbf y_2 \end{pmatrix} = \begin{pmatrix} -4 & -27 & 25 & 0 & 3 & -8 \\ 0 & -4 & -25 & 36 & 2 & -4 \\ 0 & 0 & -2 & -12 & 1 & -1 \\ 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 0 \end{pmatrix}, </math> :<math> J = \begin{pmatrix} 4 & 1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}, </math> where the matrix <math>M</math> is a [[generalized modal matrix]] for <math>A</math> and <math>AM = MJ</math>.<ref>{{harvtxt|Bronson|1970|p=203}}</ref> ==See also== * [[Canonical form]] * [[Change of basis]] * [[Normal basis]] * [[Normal form (mathematics)|Normal form (disambiguation)]] * [[Polynomial basis]] == Notes == <references/> ==References== * {{ citation | first1 = Richard | last1 = Bronson | year = 1970 | lccn = 70097490 | title = Matrix Methods: An Introduction | publisher = [[Academic Press]] | location = New York }} * {{Citation |last1 = Deng |first1 = Bangming |last2 = Ju |first2 = Jie |last3 = Parshall |first3 = Brian |last4 = Wang |first4 = Jianpan |title = Finite Dimensional Algebras and Quantum Groups |url = https://books.google.com/books?id=k9aUvxN2w2MC |publisher = [[American Mathematical Society]] |location = Providence, R.I. |series = Mathematical surveys and monographs |isbn = 9780821875315 |year = 2008 |volume = 150 }} *{{Citation | last1=Kashiwara | first1=Masaki | author1-link=Masaki Kashiwara | title=Crystalizing the q-analogue of universal enveloping algebras | url=https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-133/issue-2/Crystalizing-the-q-analogue-of-universal-enveloping-algebras/cmp/1104201397.full | mr=1090425 | year=1990 | journal=Communications in Mathematical Physics | issn=0010-3616 | volume=133 | issue=2 | pages=249–260 | doi=10.1007/bf02097367| bibcode=1990CMaPh.133..249K | s2cid=121695684 | url-access=subscription }} *{{Citation | last1=Kashiwara | first1=Masaki | author1-link=Masaki Kashiwara | title=On crystal bases of the q-analogue of universal enveloping algebras | url=https://doi.org/10.1215/S0012-7094-91-06321-0 | mr=1115118 | year=1991 | journal=Duke Mathematical Journal | issn=0012-7094 | volume=63 | issue=2 | pages=465–516 | doi=10.1215/S0012-7094-91-06321-0 | url-access=subscription }} *{{Citation | last1=Lusztig | first1=George | author1-link=George Lusztig | title=Canonical bases arising from quantized enveloping algebras | doi=10.2307/1990961 | mr=1035415 | year=1990 | journal=[[Journal of the American Mathematical Society]] | issn=0894-0347 | volume=3 | issue=2 | pages=447–498| jstor=1990961 | doi-access=free }} *{{Citation | last1=Lusztig | first1=George | author1-link=George Lusztig | title=Quivers, perverse sheaves and quantized enveloping algebras | doi=10.2307/2939279 | mr=1088333 | year=1991 | journal=[[Journal of the American Mathematical Society]] | issn=0894-0347 | volume=4 | issue=2 | pages=365–421| jstor=2939279 | doi-access=free }} *{{Citation | last1=Lusztig | first1=George | author1-link=George Lusztig | year = 1993 | title = Introduction to quantum groups | publisher = Birkhauser Boston | location = Boston, MA | isbn=0-8176-3712-5 | mr=1227098}} * {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }} [[Category:Linear algebra]] [[Category:Abstract algebra]] [[Category:Lie algebras]] [[Category:Representation theory]] [[Category:Quantum groups]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Harvtxt
(
edit
)
Template:Short description
(
edit
)