Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Carathéodory's theorem (convex hull)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Point in the convex hull of a set P in Rd, is the convex combination of d+1 points in P}} {{other uses|Carathéodory's theorem (disambiguation)}} '''Carathéodory's theorem''' is a theorem in [[convex geometry]]. It states that if a point <math>x</math> lies in the [[convex hull]] <math>\mathrm{Conv}(P)</math> of a set <math>P\subset \R^d</math>, then <math>x</math> lies in some ''<math>d</math>''-dimensional [[simplex]] with vertices in <math>P</math>. Equivalently, <math>x</math> can be written as the [[convex combination]] of <math>d+1</math> or fewer points in <math>P</math>. Additionally, <math>x</math> can be written as the convex combination of at most <math>d+1</math> ''extremal'' points in <math>P</math>, as non-extremal points can be removed from <math>P</math> without changing the membership of ''<math>x</math>'' in the convex hull. An equivalent theorem for [[Conical combination|conical combinations]] states that if a point <math>x</math> lies in the [[conical hull]] <math>\mathrm{Cone}(P)</math> of a set <math>P\subset \R^d</math>, then <math>x</math> can be written as the conical combination of at most <math>d</math> points in <math>P</math>.<ref name="lp">{{Cite Lovasz Plummer|mode=cs1}}</ref>{{rp|257}} Two other theorems of [[Helly's theorem|Helly]] and [[Radon's theorem|Radon]] are closely related to Carathéodory's theorem: the latter theorem can be used to prove the former theorems and vice versa.<ref>{{cite conference |last1=Danzer |first1=L. |last2=Grünbaum |first2=B. |author2-link=Branko Grünbaum |last3=Klee |first3=V. |author3-link=Victor Klee |year=1963 |title=Convexity |url= |series=Proc. Symp. Pure Math. |publisher=[[American Mathematical Society]] |volume=7 |pages=101–179 |contribution=Helly's theorem and its relatives}} See in particular p.109</ref> The result is named for [[Constantin Carathéodory]], who proved the theorem in 1911 for the case when <math>P</math> is [[Compact space|compact]].<ref>{{Cite journal|last=Carathéodory|first=C.|title=Über den Variabilitätsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen|journal=Rendiconti del Circolo Matematico di Palermo (1884–1940)|language=de|volume=32|issue=1|pages=193–217[see p.200 bottom]|doi=10.1007/BF03014795|year=1911|s2cid=120032616|url=https://link.springer.com/article/10.1007%2FBF03014795}}</ref> In 1914 [[Ernst Steinitz]] expanded Carathéodory's theorem for arbitrary sets.<ref>{{cite journal |last=Steinitz |first=Ernst |author-link=Ernst Steinitz |title=Bedingt konvergente Reihen und konvexe Systeme |journal=J. Reine Angew. Math. |volume=1913 |year=1913 |pages=128–175 |doi=10.1515/crll.1913.143.128 |issue=143 |s2cid=120411668 }}</ref> <!-- *'''TO DO''': state/quote [3]'s formulation of theorem --> <!-- *'''TO DO''': state/quote [4]'s formulation of theorem--> == Example == [[Image:Caratheodorys theorem example.svg|thumb|280px|An illustration of Carathéodory's theorem for a square in '''R'''<sup>2</sup>]] Carathéodory's theorem in 2 dimensions states that we can construct a triangle consisting of points from ''P'' that encloses any point in the convex hull of ''P''. For example, let ''P'' = {(0,0), (0,1), (1,0), (1,1)}. The convex hull of this set is a square. Let ''x'' = (1/4, 1/4) in the convex hull of ''P''. We can then construct a set {(0,0),(0,1),(1,0)} = {{italics correction|''P''}}′, the convex hull of which is a triangle and encloses ''x.'' ==Proof== '''Note:''' We will only use the fact that <math>\R</math> is an [[ordered field]], so the theorem and proof works even when <math>\R</math> is replaced by any field <math>\mathbb F</math>, together with a total order. We first formally state Carathéodory's theorem:<ref>{{Cite book |last=Leonard |first=I. Ed |title=Geometry of convex sets |last2=Lewis |first2=J. E. |date=2016 |publisher=Wiley Blackwell |isbn=978-1-119-02266-4 |location=Hoboken, New Jersey |chapter=3.3 Convex Hulls}}</ref> {{Math theorem | name = Carathéodory's theorem | note = | math_statement = If <math>x \in \mathrm{Cone}(S) \subset \R^d</math>, then <math>x</math> is the nonnegative sum of at most <math>d</math> points of <math>S</math>. If <math>x \in \mathrm{Conv}(S) \subset \R^d</math>, then <math>x</math> is the convex sum of at most <math>d+1</math> points of <math>S</math>. }} The essence of Carathéodory's theorem is in the finite case. This reduction to the finite case is possible because <math>\mathrm{Conv}(S)</math> is the set of ''finite'' convex combination of elements of <math>S</math> (see the [[convex hull]] page for details). {{Math theorem | name = Lemma | note = | math_statement = If <math>q_1, ..., q_N \in \R^d</math> then <math>\forall x \in \mathrm{Conv}(\{q_1, ..., q_N\})</math>, exists <math>w_1, ..., w_N \geq 0</math> such that <math>x = \sum_n w_n q_n</math>, and at most <math>d</math> of them are nonzero. }}With the lemma, Carathéodory's theorem is a simple extension: {{Math proof|title=Proof of Carathéodory's theorem|proof= For any <math>x\in \mathrm{Conv}(S)</math>, represent <math>x=\sum_{n=1}^N w_n q_n</math> for some <math>q_1, ..., q_N\in S</math>, then <math>x\in \mathrm{Conv}(\{q_1, ..., q_N\})</math>, and we use the lemma. The second part{{Clarify|date=April 2024|reason=In the proof, there is a mention of two parts. The first part, which concerns the "Cone", has not been treated. The connection between the two parts ("Cone" and "Conv") is not clear.}} reduces to the first part by "lifting up one dimension", a common trick used to reduce affine geometry to linear algebra, and reduce convex bodies to convex cones. Explicitly, let <math>S\subset \R^d</math>, then identify <math>\R^d</math> with the subset <math>\{w \in \R^{d+1}: w_{d+1} = 1\}</math>. This induces an embedding of <math>S</math> into <math>S \times \{1\}\subset \R^{d+1}</math>. Any <math>x\in S</math>, by first part, has a "lifted" representation <math>(x, 1) = \sum_{n=1}^N w_n (q_n, 1)</math> where at most <math>d+1</math> of <math>w_n</math> are nonzero. That is, <math>x = \sum_{n=1}^N w_n q_n</math>, and <math>1 =\sum_{n=1}^N w_n</math>, which completes the proof. }} {{Math proof|title=Proof of lemma|proof= This is trivial when <math>N \leq d</math>. If we can prove it for all <math>N = d+1</math>, then by induction we have proved it for all <math>N \geq d+1</math>. Thus it remains to prove it for <math>N = d+1</math>. This we prove by induction on <math>d</math>. Base case: <math>d=1, N = 2</math>, trivial. Induction case. Represent <math>x = \sum_{n=1}^{d+1} w_n q_n</math>. If some <math> w_n = 0</math>, then the proof is finished. So assume all <math>w_n > 0</math> If <math>\{q_1, ..., q_{d}\}</math> is linearly dependent, then we can use induction on its linear span to eliminate one nonzero term in <math>\sum_{n=1}^d \frac{w_n}{w_1 + \cdots + w_d}q_n</math>, and thus eliminate it in <math>x = \sum_{n=1}^{d+1} w_n q_n</math> as well. Else, there exists <math>(u_1, ..., u_{d}) \in \R^{d}</math>, such that <math>\sum_{n=1}^{d} u_n q_n = q_{d+1}</math>. Then we can interpolate a full interval of representations: <math display="block">x = \sum_{n=1}^{d} (w_n+ \theta w_{d+1}u_n) q_n + (1-\theta) w_{d+1} q_{d+1}; \quad \theta\in[0, 1]</math> If <math>w_n + w_{d+1} u_n \geq 0</math> for all <math>n=1, ..., d</math>, then set <math>\theta = 1</math>. Otherwise, let <math>\theta</math> be the smallest <math>\theta</math> such that one of <math>w_n + \theta w_{d+1} u_n = 0</math>. Then we obtain a convex representation of <math>x</math> with <math>\leq d</math> nonzero terms. }} Alternative proofs use [[Helly's theorem]] or the [[Perron–Frobenius theorem]].<ref>{{Cite book|url=http://ebooks.cambridge.org/ref/id/CBO9780511566172|title=Convexity|last=Eggleston|first=H. G.|publisher=Cambridge University Press|year=1958|doi=10.1017/cbo9780511566172|isbn=9780511566172}} See pages 40–41.</ref><ref>{{Cite journal|arxiv=1901.00540|first1=Márton|last1=Naszódi|first2=Alexandr|last2=Polyanskii|title=Perron and Frobenius Meet Carathéodory|journal=The Electronic Journal of Combinatorics|year=2021|volume=28|issue=3|doi=10.37236/9996|s2cid=119656227}}</ref> == Variants == === Carathéodory's number === For any nonempty <math>P\subset \R^d</math>, define its '''Carathéodory's number''' to be the smallest integer <math>r</math>, such that for any <math>x\in \mathrm{Conv}(P)</math>, there exists a representation of <math>x</math> as a convex sum of up to <math>r</math> elements in <math>P</math>. Carathéodory's theorem simply states that any nonempty subset of <math>\R^d</math> has Carathéodory's number <math>\leq d+1</math>. This upper bound is not necessarily reached. For example, the unit sphere in <math>\R^d</math> has Carathéodory's number equal to 2, since any point inside the sphere is the convex sum of two points on the sphere. With additional assumptions on <math>P\subset \R^d</math>, upper bounds strictly lower than <math>d+1</math> can be obtained.<ref>{{Cite journal |last1=Bárány |first1=Imre |last2=Karasev |first2=Roman |date=2012-07-20 |title=Notes About the Carathéodory Number |journal=Discrete & Computational Geometry |language=en |volume=48 |issue=3 |pages=783–792 |arxiv=1112.5942 |doi=10.1007/s00454-012-9439-z |issn=0179-5376 |s2cid=9090617}}</ref> === Dimensionless variant === Recently, Adiprasito, Barany, Mustafa and Terpai proved a variant of Caratheodory's theorem that does not depend on the dimension of the space.<ref>{{cite arXiv|last1=Adiprasito|first1=Karim|last2=Bárány|first2=Imre|last3=Mustafa|first3=Nabil H.|last4=Terpai|first4=Tamás|date=2019-08-28|title=Theorems of Carathéodory, Helly, and Tverberg without dimension|class=math.MG|eprint=1806.08725}}</ref> === {{Anchor|colorful}}Colorful Carathéodory theorem === Let ''X''<sub>1</sub>, ..., ''X''<sub>''d''+1</sub> be sets in '''R'''<sup>''d''</sup> and let ''x'' be a point contained in the intersection of the convex hulls of all these ''d''+1 sets. Then there is a set ''T'' = {''x''<sub>1</sub>, ..., ''x''<sub>''d''+1</sub>}, where {{math|''x''<sub>1</sub> ∈ ''X''<sub>1</sub>, ..., ''x''<sub>''d''+1</sub> ∈ ''X''<sub>''d''+1</sub>}}, such that the convex hull of ''T'' contains the point ''x''.<ref name=":0">{{Cite journal|date=1982-01-01|title=A generalization of carathéodory's theorem|journal=Discrete Mathematics|language=en|volume=40|issue=2–3|pages=141–152|doi=10.1016/0012-365X(82)90115-7|issn=0012-365X|last1=Bárány|first1=Imre|doi-access=free}}</ref> By viewing the sets ''X''<sub>1</sub>, ..., ''X''<sub>''d''+1</sub> as different colors, the set ''T'' is made by points of all colors, hence the "colorful" in the theorem's name.<ref>{{Cite journal|last1=Montejano|first1=Luis|last2=Fabila|first2=Ruy|last3=Bracho|first3=Javier|last4=Bárány|first4=Imre|last5=Arocha|first5=Jorge L.|date=2009-09-01|title=Very Colorful Theorems|journal=Discrete & Computational Geometry|language=en|volume=42|issue=2|pages=142–154|doi=10.1007/s00454-009-9180-4|issn=1432-0444|doi-access=free}}</ref> The set ''T'' is also called a ''rainbow simplex'', since it is a ''d''-dimensional [[simplex]] in which each corner has a different color.<ref name="Mustafa 1300–1305">{{Cite journal|last1=Mustafa|first1=Nabil H.|last2=Ray|first2=Saurabh|date=2016-04-06|title=An optimal generalization of the Colorful Carathéodory theorem|journal=Discrete Mathematics|language=en|volume=339|issue=4|pages=1300–1305|doi=10.1016/j.disc.2015.11.019|issn=0012-365X|doi-access=free}}</ref> This theorem has a variant in which the convex hull is replaced by the [[conical hull]].<ref name=":0" />{{Rp|Thm.2.2}} Let ''X''<sub>1</sub>, ..., ''X''<sub>''d''</sub> be sets in '''R'''<sup>d</sup> and let ''x'' be a point contained in the intersection of the ''conical hulls'' of all these ''d'' sets. Then there is a set ''T'' = {''x''<sub>1</sub>, ..., ''x''<sub>''d''</sub>}, where {{math|''x''<sub>1</sub> ∈ ''X''<sub>1</sub>, ..., ''x''<sub>''d''</sub> ∈ ''X''<sub>''d''</sub>}}, such that the ''conical hull'' of ''T'' contains the point ''x''.<ref name=":0" /> Mustafa and Ray extended this colorful theorem from points to convex bodies.<ref name="Mustafa 1300–1305"/> The computational problem of finding the colorful set lies in the intersection of the complexity classes [[PPAD (complexity)|PPAD]] and [[PLS (complexity)|PLS]].<ref>{{Citation |last1=Meunier |first1=Frédéric |title=The Rainbow at the End of the Line ? A PPAD Formulation of the Colorful Carathéodory Theorem with Applications |date=2017-01-01 |work=Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) |pages=1342–1351 |series=Proceedings |publisher=Society for Industrial and Applied Mathematics |doi=10.1137/1.9781611974782.87 |last2=Mulzer |first2=Wolfgang |last3=Sarrabezolles |first3=Pauline |last4=Stein |first4=Yannik|isbn=978-1-61197-478-2 |s2cid=5784949 |doi-access=free |arxiv=1608.01921 }}</ref> ==See also== * [[Shapley–Folkman lemma]] * [[Helly's theorem]] * [[Kirchberger's theorem]] * [[N-dimensional polyhedron]] * [[Radon's theorem]], and its generalization [[Tverberg's theorem]] * [[Krein–Milman theorem]] * [[Choquet theory]] ==Notes== {{reflist}} ==Further reading== *{{cite book | last = Eckhoff | first = J.|ref=none | contribution = Helly, Radon, and Carathéodory type theorems | location = Amsterdam | pages = 389–448 | publisher = North-Holland | title = Handbook of Convex Geometry | volume = A, B | year = 1993}} *{{Cite journal|last1=Mustafa|first1=Nabil|last2=Meunier|first2=Frédéric|last3=Goaoc|first3=Xavier|last4=De Loera|first4=Jesús|date=2019|title=The discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and Tverberg|journal=Bulletin of the American Mathematical Society|language=en|volume=56|issue=3|pages=415–511|doi=10.1090/bull/1653|issn=0273-0979|arxiv=1706.05975|s2cid=32071768|ref=none}} ==External links== * [https://planetmath.org/caratheodorystheorem Concise statement of theorem] in terms of convex hulls (at [[PlanetMath]]) {{Convex analysis and variational analysis}} {{DEFAULTSORT:Caratheodory's theorem (convex hull)}} [[Category:Articles containing proofs]] [[Category:Convex hulls]] [[Category:Geometric transversal theory]] [[Category:Theorems in convex geometry]] [[Category:Theorems in discrete geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Anchor
(
edit
)
Template:Citation
(
edit
)
Template:Cite Lovasz Plummer
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Convex analysis and variational analysis
(
edit
)
Template:Italics correction
(
edit
)
Template:Math
(
edit
)
Template:Math proof
(
edit
)
Template:Math theorem
(
edit
)
Template:Other uses
(
edit
)
Template:Reflist
(
edit
)
Template:Rp
(
edit
)
Template:Short description
(
edit
)