Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cardioid
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{Short description|Type of plane curve}} {{CS1 config|mode=cs1}} [[File:Herzkurve.svg|thumb|A cardioid]][[File:Caustique.jpg|thumb|right|200px|The [[caustic (optics)|caustic]] appearing on the surface of this cup of coffee is a cardioid.]] In [[geometry]], a '''cardioid''' ({{ety|el|[[wikt:καρδιά|''καρδιά'']] (kardiá)|heart}}) is a [[plane curve]] traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an [[epicycloid]] having a single [[Cusp (singularity)|cusp]]. It is also a type of [[sinusoidal spiral]], and an [[inverse curve]] of the [[parabola]] with the focus as the center of inversion.<ref>{{MathWorld|title=Parabola Inverse Curve|urlname=ParabolaInverseCurve}}</ref> A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.<ref>S Balachandra Rao . Differential Calculus, p. 457</ref> [[File:Cardiod animation.gif|thumb|right|Cardioid generated by a rolling circle on a circle with the same radius]] The name was coined by [[Giovanni Salvemini]] in 1741<ref>Lockwood</ref> but the cardioid had been the subject of study decades beforehand.<ref name="Yates">Yates</ref> Although named for its heart-like form, it is shaped more like the outline of the cross-section of a round [[apple]] without the stalk.<ref>{{cite book | last1 = Gutenmacher | first1 = Victor | last2 = Vasilyev | first2 = N. B. | doi = 10.1007/978-1-4757-3809-4 | isbn = 9781475738094 | location = Boston | page = 90 | publisher = Birkhäuser | title = Lines and Curves | year = 2004}}</ref> A [[cardioid microphone#Cardioid, hypercardioid, supercardioid, subcardioid|cardioid microphone]] exhibits an [[acoustics|acoustic]] pickup pattern that, when graphed in two dimensions, resembles a cardioid (any 2d plane containing the 3d straight line of the microphone body). In three dimensions, the cardioid is shaped like an apple centred around the microphone which is the "stalk" of the apple. == Equations == [[File:Kardioide.svg|thumb|Generation of a cardioid and the coordinate system used]] Let <math>a</math> be the common radius of the two generating circles with midpoints <math>(-a,0), (a,0)</math>, <math>\varphi</math> the rolling angle and the origin the starting point (see picture). One gets the * [[parametric representation]]: <math display="block">\begin{align} x(\varphi) &= 2a (1 - \cos\varphi)\cdot\cos\varphi \ , \\ y(\varphi) &= 2a (1 - \cos\varphi)\cdot\sin\varphi \ , \qquad 0\le \varphi < 2\pi \end{align}</math> and herefrom the representation in * [[polar coordinates]]: <math display="block">r(\varphi) = 2a (1 - \cos\varphi).</math> * Introducing the substitutions <math>\cos\varphi = x/r</math> and <math display="inline">r = \sqrt{x^2 + y^2}</math> one gets after removing the square root the implicit representation in [[Cartesian coordinates]]: <math display="block">\left(x^2 + y^2\right)^2 + 4 a x \left(x^2 + y^2\right) - 4a^2 y^2 = 0.</math> ===Proof for the parametric representation=== A proof can be established using complex numbers and their common description as the [[complex plane]]. The rolling movement of the black circle on the blue one can be split into two rotations. In the complex plane a rotation around point <math>0</math> (the origin) by an angle <math>\varphi</math> can be performed by multiplying a point <math>z</math> (complex number) by <math> e^{i\varphi}</math>. Hence : the rotation <math>\Phi_+</math> around point <math>a</math> is<math>:z \mapsto a + (z - a)e^{i\varphi}</math>, : the rotation <math>\Phi_-</math> around point <math>-a</math> is: <math>z \mapsto -a + (z + a)e^{i\varphi}</math>. A point <math>p(\varphi)</math> of the cardioid is generated by rotating the origin around point <math>a</math> and subsequently rotating around <math>-a</math> by the same angle <math>\varphi</math>: <math display="block">p(\varphi) = \Phi_ - (\Phi_+(0)) = \Phi_-\left(a - ae^{i\varphi}\right) = -a + \left( a - ae^{i\varphi} + a\right)e^{i\varphi} = a\;\left(-e^{i2\varphi} + 2e^{i\varphi} - 1\right).</math> From here one gets the parametric representation above: <math display="block">\begin{array}{cclcccc} x(\varphi) &=& a\;(-\cos(2\varphi) + 2\cos\varphi - 1) &=& 2a(1 - \cos\varphi)\cdot\cos\varphi & & \\ y(\varphi) &=& a\;(-\sin(2\varphi) + 2\sin\varphi) &=& 2a(1 - \cos\varphi)\cdot\sin\varphi &.& \end{array}</math> (The [[trigonometric functions#Basic identities|trigonometric identities]] <math>e^{i\varphi} = \cos\varphi + i\sin\varphi, \ (\cos\varphi)^2 + (\sin\varphi)^2 = 1,</math> <math>\cos(2\varphi) = (\cos\varphi)^2 - (\sin\varphi)^2, </math> and <math>\sin (2\varphi) = 2\sin\varphi\cos\varphi</math> were used.) == Metric properties == For the cardioid as defined above the following formulas hold: * ''area'' <math>A = 6\pi a^2</math>, * ''arc length'' <math>L = 16 a</math> and * ''[[radius of curvature]]'' <math>\rho(\varphi) = \tfrac{8}{3}a\sin\tfrac{\varphi}{2} \, . </math> The proofs of these statements use in both cases the polar representation of the cardioid. For suitable formulas see [[Polar coordinate system#Integral calculus (arc length)|polar coordinate system (arc length)]] and [[polar coordinate system#Integral calculus (area)|polar coordinate system (area)]] {{math proof | title = Proof of the area formula | proof = <math display="block">A = 2 \cdot \tfrac{1}{2}\int_0^\pi{(r(\varphi))^2}\; d\varphi = \int_0^\pi{4a^2(1 - \cos\varphi)^2}\; d\varphi = \cdots = 4a^2 \cdot \tfrac{3}{2}\pi = 6\pi a^2.</math> }} {{math proof | title = Proof of the arc length formula | proof = <math display="block">L = 2\int_0^\pi{\sqrt{r(\varphi)^2 + (r'(\varphi))^2}} \; d\varphi = \cdots = 8a\int_0^\pi\sqrt{\tfrac{1}{2}(1 - \cos\varphi)}\; d\varphi = 8a\int_0^\pi\sin\left(\tfrac{\varphi}{2}\right) d\varphi = 16a.</math> }} {{math proof | title = Proof for the radius of curvature | proof = The radius of curvature <math> \rho </math> of a curve in polar coordinates with equation <math>r=r(\varphi)</math> is (s. [[:de:Krümmung#Ebene Kurven|curvature]]) <math display="block">\rho(\varphi) = \frac{\left[r(\varphi)^2 + \dot r(\varphi)^2\right]^{3/2}} {r(\varphi)^2 + 2 \dot r(\varphi)^2 - r(\varphi) \ddot r(\varphi)} \ .</math> For the cardioid <math>r(\varphi) = 2a (1 - \cos\varphi) = 4a \sin^2\left(\tfrac{\varphi}{2}\right)</math> one gets <math display="block">\rho(\varphi) = \cdots = \frac{\left[16a^2\sin^2\frac{\varphi}{2}\right]^\frac{3}{2}} {24a^2 \sin^2\frac{\varphi}{2}} = \frac{8}{3}a\sin\frac{\varphi}{2} \ . </math> }} == Properties == [[File:Kardioide-2.svg|thumb|Chords of a cardioid]] === Chords through the cusp === ; C1: ''[[Chord (geometry)|Chords]]'' through the [[cusp (singularity)|cusp]] of the cardioid have the same length <math>4a</math>. ; C2: The ''midpoints'' of the [[chord (geometry)|chords]] through the cusp lie on the perimeter of the fixed generator circle (see picture). ==== Proof of C1 ==== The points <math>P: p(\varphi),\; Q: p(\varphi + \pi)</math> are on a [[chord (geometry)|chord]] through the cusp (=origin). Hence <math display="block">\begin{align} |PQ| &= r(\varphi) + r(\varphi + \pi) \\ &= 2a (1 - \cos\varphi) + 2a (1 - \cos(\varphi + \pi)) = \cdots = 4a \end{align}.</math> ==== Proof for C2 ==== For the proof the representation in the complex plane (see above) is used. For the points <math display="block">P:\ p(\varphi) = a\,\left(-e^{i2\varphi} + 2e^{i\varphi} - 1\right)</math> and <math display="block">Q:\ p(\varphi + \pi) = a\,\left(-e^{i2(\varphi + \pi)} + 2e^{i(\varphi + \pi)} - 1\right) = a\,\left(-e^{i2\varphi} - 2e^{i\varphi} - 1\right),</math> the midpoint of the chord <math>PQ</math> is <math display="block">M:\ \tfrac{1}{2}(p(\varphi) + p(\varphi + \pi)) = \cdots = -a - ae^{i2\varphi}</math> which lies on the perimeter of the circle with midpoint <math>-a</math> and radius <math>a</math> (see picture). === Cardioid as inverse curve of a parabola === [[File:Kardioide-parabel-1.svg|thumb|Cardioid generated by the inversion of a parabola across the unit circle (dashed)]] {{Main|inversive geometry}} : A cardioid is the [[inverse curve]] of a parabola with its focus at the center of inversion (see graph) For the example shown in the graph the generator circles have radius <math display="inline">a = \frac{1}{2}</math>. Hence the cardioid has the polar representation <math display="block">r(\varphi) = 1 - \cos\varphi</math> and its inverse curve <math display="block">r(\varphi) = \frac{1}{1 - \cos\varphi},</math> which is a parabola (s. [[parabola#In polar coordinates|parabola in polar coordinates]]) with the equation <math display="inline">x = \tfrac{1}{2}\left(y^2 - 1\right)</math> in Cartesian coordinates. ''Remark: ''Not every inverse curve of a parabola is a cardioid. For example, if a parabola is inverted across a circle whose center lies at the ''vertex'' of the parabola, then the result is a [[cissoid of Diocles]]. === Cardioid as envelope of a pencil of circles === [[File:Kardioide-kreise.svg|thumb|Cardioid as envelope of a pencil of circles]] In the previous section if one inverts additionally the tangents of the parabola one gets a [[Pencil (geometry)|pencil]] of circles through the center of inversion (origin). A detailed consideration shows: The midpoints of the circles lie on the perimeter of the fixed generator circle. (The generator circle is the inverse curve of the parabola's directrix.) This property gives rise to the following simple method to ''draw'' a cardioid: # Choose a circle <math>c</math> and a point <math>O</math> on its perimeter, # draw circles containing <math>O</math> with centers on <math>c</math>, and # draw the envelope of these circles. {{math proof | title = Proof with envelope condition | proof = The envelope of the pencil of implicitly given curves <math display="block">F(x,y,t) = 0</math> with parameter <math>t</math> consists of such points <math>(x,y)</math> which are solutions of the non-linear system <math display="block">F(x,y,t) = 0, \quad F_t(x,y,t) = 0, </math> which is the [[Envelope (mathematics)|envelope condition]]. Note that <math>F_t</math> means the [[partial derivative]] for parameter <math>t</math>. Let <math>c</math> be the circle with midpoint <math>(-1,0)</math> and radius <math>1</math>. Then <math>c</math> has parametric representation <math>(-1 + \cos t, \sin t)</math>. The pencil of circles with centers on <math>c</math> containing point <math>O = (0,0)</math> can be represented implicitly by <math display="block">F(x,y,t) = (x + 1 - \cos t)^2 + (y - \sin t)^2 - (2 - 2\cos t) = 0,</math> which is equivalent to <math display="block">F(x,y,t) = x^2 + y^2 + 2x\; (1 - \cos t) - 2 y\; \sin t = 0\; .</math> The second envelope condition is <math display="block">F_t(x,y,t) = 2x\; \sin t - 2y\; \cos t = 0 .</math> One easily checks that the points of the cardioid with the parametric representation <math display="block">x(t) = 2(1 - \cos t)\cos t,\quad y(t) = 2(1 - \cos t)\sin t</math> fulfill the non-linear system above. The parameter <math>t</math> is identical to the angle parameter of the cardioid. }} === Cardioid as envelope of a pencil of lines === [[File:Kardioide-sehnen.svg|thumb|Cardioid as envelope of a pencil of lines]] A similar and simple method to draw a cardioid uses a pencil of ''lines''. It is due to [[Luigi Cremona|L. Cremona]]: # Draw a circle, divide its perimeter into equal spaced parts with <math>2N</math> points (s. picture) and number them consecutively. # Draw the chords: <math>(1,2), (2,4), \dots, (n,2n), \dots, (N,2N), (N+1,2), (N+2,4), \dots </math>. (That is, the second point is moved by double velocity.) # The ''envelope'' of these chords is a cardioid. [[File:Cycloid-cremona-pr.svg|thumb|Cremona's generation of a cardioid]] ==== Proof ==== The following consideration uses [[trigonometric formulae]] for <math>\cos\alpha + \cos\beta</math>, <math>\sin\alpha + \sin\beta</math>, <math>1 + \cos 2\alpha </math>, <math>\cos 2\alpha</math>, and <math>\sin 2\alpha</math>. In order to keep the calculations simple, the proof is given for the cardioid with polar representation <math>r = 2(1 \mathbin{\color{red}+} \cos\varphi)</math> (''[[#In different positions|§ Cardioids in different positions]]''). ===== ''Equation of the tangent'' of the ''cardioid'' with polar representation {{math|''r'' {{=}} 2(1 + {{thinsp|cos|{{varphi}}}})}}===== From the parametric representation <math display="block">\begin{align} x(\varphi) &= 2(1 + \cos\varphi) \cos \varphi, \\ y(\varphi) &= 2(1 + \cos\varphi) \sin \varphi \end{align}</math> one gets the normal vector <math>\vec n = \left(\dot y , -\dot x\right)^\mathsf{T}</math>. The equation of the tangent <math>\dot y(\varphi) \cdot (x - x(\varphi)) - \dot x(\varphi) \cdot (y - y(\varphi)) = 0</math> is: <math display="block">(\cos2\varphi + \cos \varphi)\cdot x + (\sin 2\varphi + \sin \varphi)\cdot y = 2(1 + \cos \varphi)^2 \, .</math> With help of trigonometric formulae and subsequent division by <math display="inline">\cos\frac{1}{2}\varphi</math>, the equation of the tangent can be rewritten as: <math display="block">\cos(\tfrac{3}{2}\varphi) \cdot x + \sin\left(\tfrac{3}{2}\varphi\right) \cdot y = 4 \left(\cos\tfrac{1}{2}\varphi\right)^3 \quad 0 < \varphi < 2\pi,\ \varphi \ne \pi .</math> ===== ''Equation of the chord'' of the ''circle'' with midpoint {{math|({{thinsp|1,|0}})}} and radius {{math|3}} ===== For the equation of the secant line passing the two points <math>(1 + 3\cos\theta, 3\sin\theta),\ (1 + 3\cos{\color{red}2}\theta, 3\sin{\color{red}2}\theta))</math> one gets: <math display="block">(\sin\theta - \sin 2\theta) x + (\cos 2\theta - \sin \theta) y = -2\cos \theta - \sin(2\theta) \, .</math> With help of trigonometric formulae and the subsequent division by <math display="inline">\sin\frac{1}{2}\theta</math> the equation of the secant line can be rewritten by: <math display="block">\cos\left(\tfrac{3}{2}\theta\right) \cdot x + \sin\left(\tfrac{3}{2}\theta\right) \cdot y = 4 \left(\cos\tfrac{1}{2}\theta\right)^3 \quad 0 < \theta < 2\pi .</math> ===== Conclusion ===== Despite the two angles <math>\varphi, \theta</math> have different meanings (s. picture) one gets for <math>\varphi = \theta </math> the same line. Hence any secant line of the circle, defined above, is a tangent of the cardioid, too: : ''The cardioid is the envelope of the chords of a circle.'' ''Remark:''<br /> The proof can be performed with help of the ''envelope conditions'' (see previous section) of an implicit pencil of curves: <math display="block">F(x, y, t) = \cos\left(\tfrac{3}{2}t\right) x + \sin\left(\tfrac{3}{2}t\right) y - 4 \left(\cos\tfrac{1}{2}t\right)^3 = 0 </math> is the pencil of secant lines of a circle (s. above) and <math display="block">F_t(x, y, t) = - \tfrac{3}{2}\sin\left(\tfrac{3}{2}t\right) x + \tfrac{3}{2}\cos \left(\tfrac{3}{2}t\right) y + 3\cos\left(\tfrac{1}{2}t\right) \sin t = 0\, .</math> For fixed parameter t both the equations represent lines. Their intersection point is <math display="block">x(t) = 2(1 + \cos t)\cos t,\quad y(t) = 2(1 + \cos t)\sin t,</math> which is a point of the cardioid with polar equation <math>r = 2(1 + \cos t).</math> [[File:Kardioide-kaustik-1.svg|thumb|Cardioid as ''caustic'': light source <math>Z</math>, light ray <math>\vec s</math>, reflected ray <math>\vec r</math>]] [[File:Kardioide-kaustik-2.svg|thumb|Cardioid as caustic of a circle with light source (right) on the perimeter]] === Cardioid as caustic of a circle === The considerations made in the previous section give a proof that the [[caustic (optics)|caustic]] of a circle with light source on the perimeter of the circle is a cardioid. : If in the plane there is a light source at a point <math>Z</math> on the perimeter of a circle which is reflecting any ray, then the reflected rays within the circle are tangents of a cardioid. {{math proof | proof = As in the previous section the circle may have midpoint <math>(1,0) </math> and radius <math>3</math>. Its parametric representation is <math display="block">c(\varphi) = (1 + 3\cos\varphi, 3\sin\varphi) \ .</math> The tangent at circle point <math>C:\ k(\varphi)</math> has normal vector <math>\vec n_t = (\cos\varphi,\sin\varphi)^\mathsf{T}</math>. Hence the reflected ray has the normal vector <math>\vec n_r = \left(\cos{\color{red}\tfrac{3}{2}} \varphi, \sin{\color{red}\tfrac{3}{2}} \varphi\right)^\mathsf{T}</math> (see graph) and contains point <math>C:\ (1 + 3\cos\varphi, 3\sin\varphi) </math>. The reflected ray is part of the line with equation (see previous section) <math display="block">\cos\left(\tfrac{3}{2}\varphi\right) x + \sin \left(\tfrac{3}{2}\varphi\right) y = 4 \left(\cos\tfrac{1}{2}\varphi\right)^3 \, ,</math> which is tangent of the cardioid with polar equation <math display="block">r = 2(1 + \cos\varphi)</math> from the previous section.}} ''Remark:'' For such considerations usually multiple reflections at the circle are neglected. === Cardioid as pedal curve of a circle === [[File:Kardioide-kreistangenten.svg|thumb|Point of cardioid is foot of dropped perpendicular on tangent of circle]] The Cremona generation of a cardioid should not be confused with the following generation: Let be <math>k</math> a circle and <math>O</math> a point on the perimeter of this circle. The following is true: : The foots of perpendiculars from point <math>O</math> on the tangents of circle <math>k</math> are points of a cardioid. Hence a cardioid is a special [[pedal curve]] of a circle. ==== Proof ==== In a Cartesian coordinate system circle <math>k</math> may have midpoint <math>(2a,0)</math> and radius <math>2a</math>. The tangent at circle point <math>(2a + 2a\cos\varphi, 2a\sin \varphi)</math> has the equation <math display="block">(x - 2a) \cdot \cos\varphi + y\cdot\sin\varphi = 2a\, .</math> The foot of the perpendicular from point <math>O</math> on the tangent is point <math>(r\cos \varphi, r\sin \varphi)</math> with the still unknown distance <math>r</math> to the origin <math>O</math>. Inserting the point into the equation of the tangent yields <math display="block">(r\cos\varphi - 2a)\cos\varphi + r\sin^2\varphi = 2a \quad \rightarrow \quad r = 2a(1 + \cos \varphi) </math> which is the polar equation of a cardioid. ''Remark:'' If point <math>O</math> is not on the perimeter of the circle <math>k</math>, one gets a [[limaçon of Pascal]]. == The evolute of a cardioid == [[File:Cardioid-evol.svg|thumb| {{legend|red|A cardioid}} {{legend|green|Evolute of the cardioid}} {{legend|magenta|One point P; its centre of curvature M; and its osculating circle.}} ]] The [[evolute]] of a curve is the locus of centers of curvature. In detail: For a curve <math>\vec x(s) = \vec c(s)</math> with radius of curvature <math>\rho(s)</math> the evolute has the representation <math display="block">\vec X(s) = \vec c(s) + \rho(s)\vec n(s).</math> with <math>\vec n(s)</math> the suitably oriented unit normal. For a cardioid one gets: : The ''evolute'' of a cardioid is another cardioid, one third as large, and facing the opposite direction (s. picture). === Proof === For the cardioid with parametric representation <math display="block">x(\varphi) = 2a (1 - \cos\varphi)\cos\varphi = 4a \sin^2\tfrac{\varphi}{2}\cos\varphi\, ,</math> <math display="block">y(\varphi) = 2a (1 - \cos\varphi)\sin\varphi = 4a \sin^2\tfrac{\varphi}{2}\sin\varphi</math> the unit normal is <math display="block">\vec n(\varphi) = (-\sin\tfrac{3}{2}\varphi, \cos\tfrac{3}{2}\varphi)</math> and the radius of curvature <math display="block">\rho(\varphi) = \tfrac{8}{3}a\sin\tfrac{\varphi}{2} \, . </math> Hence the parametric equations of the evolute are <math display="block">X(\varphi) = 4a \sin^2\tfrac{\varphi}{2}\cos\varphi-\tfrac{8}{3}a\sin\tfrac{\varphi}{2}\cdot \sin\tfrac{3}{2} \varphi = \cdots = \tfrac{4}{3}a\cos^2\tfrac{\varphi}{2}\cos\varphi - \tfrac{4}{3}a \, , </math> <math display="block">Y(\varphi) = 4a \sin^2\tfrac{\varphi}{2} \sin\varphi + \tfrac{8}{3}a \sin\tfrac{\varphi}{2} \cdot\cos\tfrac{3}{2} \varphi = \cdots = \tfrac{4}{3}a \cos^2\tfrac{\varphi}{2} \sin\varphi \, . </math> These equations describe a cardioid a third as large, rotated 180 degrees and shifted along the x-axis by <math>-\tfrac{4}{3} a</math>. (Trigonometric formulae were used: <math> \sin\tfrac{3}{2}\varphi = \sin\tfrac{\varphi}{2}\cos\varphi + \cos\tfrac{\varphi}{2}\sin\varphi\ ,\ \cos\tfrac{3}{2}\varphi = \cdots, \ \sin\varphi = 2\sin\tfrac{\varphi}{2}\cos\tfrac{\varphi}{2}, \ \cos\varphi= \cdots \ . </math>) == Orthogonal trajectories == [[File:Cardioid-penc.svg|300px|thumb|[[Orthogonality|Orthogonal]] cardioids]] An [[orthogonal trajectory]] of a pencil of curves is a curve which intersects any curve of the pencil orthogonally. For cardioids the following is true: {{block indent | em = 1.5 | text = The orthogonal trajectories of the pencil of cardioids with equations <math display="block">r=2a(1-\cos\varphi)\ , \; a>0 \ , \ </math> are the cardioids with equations <math display="block">r=2b(1+\cos\varphi)\ , \; b>0 \ . </math>}} (The second pencil can be considered as reflections at the y-axis of the first one. See diagram.) === Proof === For a curve given in [[polar coordinates]] by a function <math>r(\varphi)</math> the following connection to Cartesian coordinates hold: <math display="block">\begin{align} x(\varphi) &= r(\varphi)\cos\varphi\, ,\\ y(\varphi) &= r(\varphi)\sin\varphi \end{align} </math> and for the derivatives <math display="block">\begin{align} \frac{dx}{d\varphi} &= r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi\, ,\\ \frac{dy}{d\varphi} &= r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi\, . \end{align}</math> Dividing the second equation by the first yields the Cartesian slope of the tangent line to the curve at the point <math>(r(\varphi), \varphi)</math>: <math display="block">\frac{dy}{dx} = \frac{r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi}{r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi}.</math> For the cardioids with the equations <math>r=2a(1-\cos\varphi) \; </math> and <math>r = 2b(1 + \cos\varphi)\ </math> respectively one gets: <math display="block">\frac{dy_a}{dx} = \frac{\cos(\varphi) - \cos(2\varphi)}{\sin(2\varphi) - \sin(\varphi)} </math> and <math display="block"> \frac{dy_b}{dx} = -\frac{\cos(\varphi) + \cos(2\varphi)}{\sin(2\varphi) + \sin(\varphi)}\ .</math> (The slope of any curve depends on <math>\varphi</math> only, and not on the parameters <math>a</math> or <math>b</math>!) Hence <math display="block">\frac{dy_a}{dx}\cdot \frac{dy_b}{dx} = \cdots = -\frac{\cos^2\varphi-\cos^2 (2\varphi)}{\sin^2 (2\varphi)-\sin^2\varphi} = -\frac{-1 + \cos^2\varphi + 1 - \cos^2 2\varphi}{\sin^2 (2\varphi) - \sin^2(\varphi)} = -1\, .</math> That means: Any curve of the first pencil intersects any curve of the second pencil orthogonally. [[File:Kardioide-4.svg|thumb|4 cardioids in polar representation and their position in the coordinate system]] == In different positions == Choosing other positions of the cardioid within the coordinate system results in different equations. The picture shows the 4 most common positions of a cardioid and their polar equations. == In complex analysis == [[File:Mandel zoom 00 mandelbrot set.jpg|thumb|right|200px|[[Boundary (topology)|Boundary]] of the central, period 1, region of the [[Mandelbrot set]] is a precise cardioid.]] In [[complex analysis]], the [[image (mathematics)|image]] of any circle through the origin under the map <math>z \to z^2</math> is a cardioid. One application of this result is that the boundary of the central period-1 component of the [[Mandelbrot set]] is a cardioid given by the [[parametric equation|equation]] <math display="block"> c \,=\, \frac{1 - \left(e^{it} - 1\right)^2}{4}.</math> The Mandelbrot set contains an infinite number of slightly distorted copies of itself and the central bulb of any of these smaller copies is an approximate cardioid. [[File:Cardioid in a watch.jpg|thumb|Cardioid formed by light on a [[Watch|watch dial]].]] == Caustics == Certain [[caustic (mathematics)|caustics]] can take the shape of cardioids. The catacaustic of a circle with respect to a point on the circumference is a cardioid. Also, the catacaustic of a cone with respect to rays parallel to a generating line is a surface whose cross section is a cardioid. This can be seen, as in the photograph to the right, in a conical cup partially filled with liquid when a light is shining from a distance and at an angle equal to the angle of the cone.<ref>[http://www.mathcurve.com/surfaces/caustic/caustic.shtml "Surface Caustique" at Encyclopédie des Formes Mathématiques Remarquables]</ref> The shape of the curve at the bottom of a cylindrical cup is half of a [[nephroid]], which looks quite similar. [[File:Cardioid construction.gif|right|thumb|210px|Generating a cardioid as [[pedal curve]] of a circle]] == See also == * [[Limaçon]] * [[Nephroid]] * [[Deltoid curve|Deltoid]] * [[Wittgenstein's rod]] * [[Cardioid microphone]] * [[Lemniscate of Bernoulli]] * [[Loop antenna]] * [[Radio direction finder]] * [[Radio direction finding]] * [[Yagi antenna]] * [[Giovanni Salvemini]] == Notes == {{Reflist}} == References == * {{cite book | author=R.C. Yates | title=A Handbook on Curves and Their Properties | location=Ann Arbor, MI | publisher=J. W. Edwards | pages=4 ff|chapter=Cardioid|year=1952 }} * {{cite book | author = Wells D | year = 1991 | title = The Penguin Dictionary of Curious and Interesting Geometry | publisher = Penguin Books | location = New York | isbn = 0-14-011813-6 | pages = [https://archive.org/details/penguindictionar0000well/page/24 24–25] | url = https://archive.org/details/penguindictionar0000well/page/24 }} == External links == {{Commons category|Cardioids}} * {{springer|title=Cardioid|id=p/c020390}} * {{MacTutor|class=Curves|id=Cardioid|title=Cardioid}} * [http://www.cut-the-knot.org/ctk/Cardi.shtml Hearty Munching on Cardioids] at [[cut-the-knot]] * {{MathWorld|title=Cardioid|urlname=Cardioid}} * {{MathWorld|title=Epicycloid--1-Cusped|urlname=Epicycloid1-Cusped}} * {{MathWorld|title=Heart Curve|urlname=HeartCurve}} * Xah Lee, ''[http://www.xahlee.org/SpecialPlaneCurves_dir/Cardioid_dir/cardioid.html Cardioid]'' (1998) ''(This site provides a number of alternative constructions)''. * Jan Wassenaar, ''[http://www.2dcurves.com/roulette/rouletteca.html Cardioid]'', (2005) {{Authority control}} [[Category:Roulettes (curve)]] [[Category:Quartic curves]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Block indent
(
edit
)
Template:CS1 config
(
edit
)
Template:Cite book
(
edit
)
Template:Commons category
(
edit
)
Template:Ety
(
edit
)
Template:Legend
(
edit
)
Template:MacTutor
(
edit
)
Template:Main
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Math proof
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Sister project
(
edit
)
Template:Springer
(
edit
)