Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Cartan's theorems A and B
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Coherent sheaf on a Stein manifold is spanned by sections & lacks higher cohomology}} In [[mathematics]], '''Cartan's theorems A and B''' are two results [[mathematical proof|prove]]d by [[Henri Cartan]] around 1951, concerning a [[coherent sheaf]] {{mvar|F}} on a [[Stein manifold]] {{mvar|X}}. They are significant both as applied to [[Function of several complex variables|several complex variables]], and in the general development of [[sheaf cohomology]]. {{math theorem | name = Theorem A | math_statement = {{mvar|F}} is [[sheaf spanned by global sections|spanned by its global sections]].}} Theorem B is stated in cohomological terms (a formulation that Cartan ([[#CITEREFCartan1953|1953]], p. 51) attributes to J.-P. Serre): {{math theorem | name = Theorem B | math_statement = {{math|1=''H''{{i sup|''p''}}(''X'', ''F'') = 0}} for all {{math|''p'' > 0}}.}} Analogous properties were established by [[Jean-Pierre Serre|Serre]] ([[#CITEREFSerre1957|1957]]) for coherent sheaves in [[algebraic geometry]], when {{mvar|X}} is an [[affine scheme]]. The analogue of Theorem B in this context is as follows {{harv|Hartshorne|1977|loc=Theorem III.3.7}}: {{math theorem | name = Theorem B (Scheme theoretic analogue) | math_statement = Let {{mvar|X}} be an affine scheme, {{mvar|F}} a [[quasi-coherent sheaf]] of {{math|''O<sub>X</sub>''}}-modules for the [[Zariski topology]] on {{mvar|X}}. Then {{math|1=''H''{{i sup|''p''}}(''X'', ''F'') = 0}} for all {{math|''p'' > 0}}.}} These theorems have many important applications. For instance, they imply that a holomorphic function on a closed complex submanifold, {{mvar|Z}}, of a Stein manifold {{mvar|X}} can be extended to a holomorphic function on all of {{mvar|X}}. At a deeper level, these theorems were used by [[Jean-Pierre Serre]] to prove the [[GAGA]] theorem. Theorem B is sharp in the sense that if {{math|1=''H''{{i sup|1}}(''X'', ''F'') = 0}} for all coherent sheaves {{mvar|F}} on a complex manifold {{mvar|X}} (resp. quasi-coherent sheaves {{mvar|F}} on a noetherian scheme {{mvar|X}}), then {{mvar|X}} is Stein (resp. affine); see {{harv|Serre|1956}} (resp. {{harv|Serre|1957}} and {{harv|Hartshorne|1977|loc=Theorem III.3.7}}). == See also == * [[Cousin problems]] ==References== *{{citation |first=H. |last=Cartan |authorlink=Henri Cartan |title=Variétés analytiques complexes et cohomologie |journal=Colloque tenu à Bruxelles |year=1953 |pages=41–55|zbl=0053.05301}}. * {{Citation | author1-link = Robert C. Gunning | last1=Gunning | first1=Robert C. | author2-link = Hugo Rossi | last2=Rossi | first2=Hugo | title=Analytic Functions of Several Complex Variables | publisher=[[Prentice Hall]] | year=1965|doi=10.1090/chel/368| isbn=9780821821657 }}. *{{Cite book| last1=Hartshorne | first1=Robin | author1-link=Robin Hartshorne | title=Algebraic Geometry | series=Graduate Texts in Mathematics | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=978-0-387-90244-9 | mr=0463157 | zbl=0367.14001 | year=1977 | volume=52 | url={{Google books|7z4mBQAAQBAJ|Algebraic Geometry|page=215|plainurl=yes}}|doi=10.1007/978-1-4757-3849-0}}. * {{Citation | last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Géométrie algébrique et géométrie analytique | url=http://www.numdam.org/numdam-bin/item?id=AIF_1956__6__1_0 | mr=0082175 | year=1956 | journal=[[Annales de l'Institut Fourier]] | issn=0373-0956 | volume=6 | pages=1–42 | doi=10.5802/aif.59| doi-access=free }} *{{citation |last1=Serre | first1=Jean-Pierre | author1-link=Jean-Pierre Serre | title=Sur la cohomologie des variétés algébriques |journal=Journal de Mathématiques Pures et Appliquées |volume=36 |year=1957 |pages=1–16|zbl=0078.34604}} **{{cite book |isbn=978-3-642-39815-5|title=Oeuvres - Collected Papers I: 1949 - 1959|chapter= 35. Sur la cohomologie des variétés algébriques|last1=Serre|first1=Jean-Pierre|date=2 December 2013|pages=469–484|publisher=Springer |url={{Google books|eaUoAKOAbUsC|Oeuvres - Collected Papers I: 1949 - 1959|plainurl=yes}}}} {{DEFAULTSORT:Cartan's Theorems A And B}} [[Category:Several complex variables]] [[Category:Topological methods of algebraic geometry]] [[Category:Theorems in algebraic geometry]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Citation
(
edit
)
Template:Cite book
(
edit
)
Template:Harv
(
edit
)
Template:Math
(
edit
)
Template:Math theorem
(
edit
)
Template:Mvar
(
edit
)
Template:Short description
(
edit
)