Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Catalan's conjecture
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Theorem about consecutive perfect powers}} {{for|Catalan's aliquot sequence conjecture|Aliquot sequence#CatalanâDickson conjecture}} {{for|Catalan's Mersenne number conjecture|Double Mersenne number#CatalanâMersenne number conjecture}} '''Catalan's conjecture''' (or '''MihÄilescu's theorem''') is a [[theorem]] in [[number theory]] that was [[Conjecture|conjectured]] by the mathematician [[EugĂšne Charles Catalan]] in 1844 and [[mathematical proof|proven]] in 2002 by [[Preda MihÄilescu]] at [[Paderborn University]].<ref>{{Citation |last=Weisstein |first=Eric W. |author-link=Eric W. Weisstein |title=Catalan's conjecture |publisher=[[MathWorld]] |url=https://mathworld.wolfram.com/CatalansConjecture.html }}</ref><ref>{{Harvnb|MihÄilescu|2004}}</ref> The [[integer]]s 2<sup>3</sup> and 3<sup>2</sup> are two [[perfect power]]s (that is, powers of exponent higher than one) of [[natural number]]s whose values (8 and 9, respectively) are consecutive. The theorem states that this is the ''only'' case of two consecutive perfect powers. That is to say, that {{math_theorem|Catalan's conjecture|the only [[Diophantine equation|solution in the natural numbers]] of :<math>x^a - y^b = 1</math> for {{math|''a'', ''b'' > 1}}, {{math|''x'', ''y'' > 0}} is {{math|''x'' {{=}} 3}}, {{math|''a'' {{=}} 2}}, {{math|''y'' {{=}} 2}}, {{math|''b'' {{=}} 3}}.}} ==History== The history of the problem dates back at least to [[Gersonides]], who proved a special case of the conjecture in 1343 where (''x'', ''y'') was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when [[Victor-AmĂ©dĂ©e Lebesgue]] dealt with the case ''b'' = 2.<ref>{{citation | author=Victor-AmĂ©dĂ©e Lebesgue | author-link=Victor-AmĂ©dĂ©e Lebesgue | title=Sur l'impossibilitĂ©, en nombres entiers, de l'Ă©quation ''x<sup>m</sup>''=''y''<sup>2</sup>+1 | journal=Nouvelles annales de mathĂ©matiques | series=1<sup>re</sup> sĂ©rie | volume=9 | year=1850 | pages=178â181 }}</ref> In 1976, [[Robert Tijdeman]] applied [[Baker's method]] in [[transcendental number theory|transcendence theory]] to establish a [[upper and lower bounds|bound]] on ''a'',''b'' and used existing results bounding ''x'',''y'' in terms of ''a'', ''b'' to give an effective upper bound for ''x'',''y'',''a'',''b''. Michel Langevin computed a value of <math>\exp \exp \exp \exp 730 \approx 10^{10^{10^{10^{317}}}}</math> for the bound,<ref>{{citation | title=13 Lectures on Fermat's Last Theorem | first=Paulo | last=Ribenboim | author-link=Paulo Ribenboim | publisher=[[Springer-Verlag]] | year=1979 | isbn=0-387-90432-8 | zbl=0456.10006 | page=236 }}</ref> resolving Catalan's conjecture for all but a finite number of cases. Catalan's conjecture was proven by [[Preda MihÄilescu]] in April 2002. The proof was published in the ''[[Journal fĂŒr die reine und angewandte Mathematik]]'', 2004. It makes extensive use of the theory of [[cyclotomic field]]s and [[Galois module]]s. An exposition of the proof was given by [[Yuri Bilu]] in the [[SĂ©minaire Bourbaki]].<ref>{{Citation | last1=Bilu | first1=Yuri | title=SĂ©minaire Bourbaki vol. 2003/04 ExposĂ©s 909-923 | series=AstĂ©risque | year=2004 | volume=294 | chapter= Catalan's conjecture | pages=1â26| chapter-url=http://www.numdam.org/book-part/SB_2002-2003__45__1_0/ }}</ref> In 2005, MihÄilescu published a simplified proof.<ref>{{Harvnb|MihÄilescu|2005}}</ref> ==Pillai's conjecture== {{unsolved|mathematics|Does each positive integer occur only finitely many times as a difference of perfect powers?}} '''Pillai's conjecture''' concerns a general difference of perfect powers {{OEIS|id=A001597}}: it is an [[open problem]] initially proposed by [[S. S. Pillai]], who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers ''A'', ''B'', ''C'' the equation <math>Ax^n - By^m = C</math> has only finitely many solutions (''x'', ''y'', ''m'', ''n'') with (''m'', ''n'') â (2, 2). Pillai proved that for fixed ''A'', ''B'', ''x'', ''y'', and for any λ less than 1, we have <math>|Ax^n - By^m| \gg x^{\lambda n}</math> uniformly in ''m'' and ''n''.<ref name=rnt>{{citation | pages=[https://archive.org/details/rationalnumberth00nark/page/n261 253]â254 | title=Rational Number Theory in the 20th Century: From PNT to FLT | url=https://archive.org/details/rationalnumberth00nark | url-access=limited | series=Springer Monographs in Mathematics | first=Wladyslaw | last=Narkiewicz | publisher=[[Springer-Verlag]] | year=2011 | isbn=978-0-857-29531-6}}</ref> The general conjecture would follow from the [[ABC conjecture]].<ref name=rnt/><ref>{{citation | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=[[Springer-Verlag]] | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020 | page=207}}</ref> Pillai's conjecture means that for every natural number ''n'', there are only finitely many pairs of perfect powers with difference ''n''. The list below shows, for ''n'' †64, all solutions for perfect powers less than 10<sup>18</sup>, such that the exponent of both powers is greater than 1. The number of such solutions for each ''n'' is listed at {{oeis|id=A076427}}. See also {{oeis|id=A103953}} for the smallest solution (> 0). {|class="wikitable" style="border:none;text-align:right;" ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |rowspan="33" style="padding:2px;background:white;border:none;"| ! ''n'' ! solution<br />count ! numbers ''k'' such that ''k'' and ''k'' + ''n''<br />are both perfect powers |- | 1 || 1 ||style="text-align:left"| 8 | 33 || 2 ||style="text-align:left"| 16, 256 |- | 2 || 1 ||style="text-align:left"| 25 | 34 || 0 ||style="text-align:left"| ''none'' |- | 3 || 2 ||style="text-align:left"| 1, 125 | 35 || 3 ||style="text-align:left"| 1, 289, 1296 |- | 4 || 3 ||style="text-align:left"| 4, 32, 121 | 36 || 2 ||style="text-align:left"| 64, 1728 |- | 5 || 2 ||style="text-align:left"| 4, 27 | 37 || 3 ||style="text-align:left"| 27, 324, {{val|14348907}} |- | 6 || 0 ||style="text-align:left"| ''none'' | 38 || 1 ||style="text-align:left"| 1331 |- | 7 || 5 ||style="text-align:left"| 1, 9, 25, 121, {{val|32761}} | 39 || 4 ||style="text-align:left"| 25, 361, 961, {{val|10609}} |- | 8 || 3 ||style="text-align:left"| 1, 8, {{val|97336}} | 40 || 4 ||style="text-align:left"| 9, 81, 216, 2704 |- | 9 || 4 ||style="text-align:left"| 16, 27, 216, {{val|64000}} | 41 || 3 ||style="text-align:left"| 8, 128, 400 |- | 10 || 1 ||style="text-align:left"| 2187 | 42 || 0 ||style="text-align:left"| ''none'' |- | 11 || 4 ||style="text-align:left"| 16, 25, 3125, 3364 | 43 || 1 ||style="text-align:left"| 441 |- | 12 || 2 ||style="text-align:left"| 4, 2197 | 44 || 3 ||style="text-align:left"| 81, 100, 125 |- | 13 || 3 ||style="text-align:left"| 36, 243, 4900 | 45 || 4 ||style="text-align:left"| 4, 36, 484, 9216 |- | 14 || 0 ||style="text-align:left"| ''none'' | 46 || 1 ||style="text-align:left"| 243 |- | 15 || 3 ||style="text-align:left"| 1, 49, {{val|1295029}} | 47 || 6 ||style="text-align:left"| 81, 169, 196, 529, 1681, {{val|250000}} |- | 16 || 3 ||style="text-align:left"| 9, 16, 128 | 48 || 4 ||style="text-align:left"| 1, 16, 121, 21904 |- | 17 || 7 ||style="text-align:left"| 8, 32, 64, 512, {{val|79507}}, {{val|140608}}, {{val|143384152904}} | 49 || 3 ||style="text-align:left"| 32, 576, {{val|274576}} |- | 18 || 3 ||style="text-align:left"| 9, 225, 343 | 50 || 0 ||style="text-align:left"| ''none'' |- | 19 || 5 ||style="text-align:left"| 8, 81, 125, 324, {{val|503284356}} | 51 || 2 ||style="text-align:left"| 49, 625 |- | 20 || 2 ||style="text-align:left"| 16, 196 | 52 || 1 ||style="text-align:left"| 144 |- | 21 || 2 ||style="text-align:left"| 4, 100 | 53 || 2 ||style="text-align:left"| 676, {{val|24336}} |- | 22 || 2 ||style="text-align:left"| 27, 2187 | 54 || 2 ||style="text-align:left"| 27, 289 |- | 23 || 4 ||style="text-align:left"| 4, 9, 121, 2025 | 55 || 3 ||style="text-align:left"| 9, 729, {{val|175561}} |- | 24 || 5 ||style="text-align:left"| 1, 8, 25, 1000, {{val|542939080312}} | 56 || 4 ||style="text-align:left"| 8, 25, 169, 5776 |- | 25 || 2 ||style="text-align:left"| 100, 144 | 57 || 3 ||style="text-align:left"| 64, 343, 784 |- | 26 || 3 ||style="text-align:left"| 1, {{val|42849}}, {{val|6436343}} | 58 || 0 ||style="text-align:left"| ''none'' |- | 27 || 3 ||style="text-align:left"| 9, 169, 216 | 59 || 1 ||style="text-align:left"| 841 |- | 28 || 7 ||style="text-align:left"| 4, 8, 36, 100, 484, {{val|50625}}, {{val|131044}} | 60 || 4 ||style="text-align:left"| 4, 196, {{val|2515396}}, {{val|2535525316}} |- | 29 || 1 ||style="text-align:left"| 196 | 61 || 2 ||style="text-align:left"| 64, 900 |- | 30 || 1 ||style="text-align:left"| 6859 | 62 || 0 ||style="text-align:left"| ''none'' |- | 31 || 2 ||style="text-align:left"| 1, 225 | 63 || 4 ||style="text-align:left"| 1, 81, 961, {{val|183250369}} |- | 32 || 4 ||style="text-align:left"| 4, 32, 49, 7744 | 64 || 4 ||style="text-align:left"| 36, 64, 225, 512 |} ==See also== {{Div col}} *[[Beal's conjecture]] *[[Equation x^y = y^x|Equation x<sup>y</sup> = y<sup>x</sup>]] *[[FermatâCatalan conjecture]] *[[Mordell curve]] *[[RamanujanâNagell equation]] *[[StĂžrmer's theorem]] *[[Tijdeman's theorem]] *[[Thaine's theorem]]{{Div col end}} == Notes == {{reflist|2}} ==References== * {{citation | first=Yuri | last=Bilu | title=Catalan's conjecture (after MihÄilescu) | journal=[[AstĂ©risque]] | volume=294 | year=2004 | pages=vii, 1â26 | mr=2111637 }} * {{citation | last=Catalan | first=Eugene | year=1844 | title=Note extraite d'une lettre adressĂ©e Ă l'Ă©diteur | language=fr | journal=[[J. Reine Angew. Math.]] | pages=192 | doi=10.1515/crll.1844.27.192 | volume=27 | mr=1578392| url=https://zenodo.org/record/1448842 }} * {{cite conference | last=Cohen | first=Henri | year=2005 | title=DĂ©monstration de la conjecture de Catalan | language=fr | trans-title=A proof of the Catalan conjecture | conference=ThĂ©orie algorithmique des nombres et Ă©quations diophantiennes | publisher=Ăditions de l'Ăcole Polytechnique | mr=222434 | location=Palaiseau | isbn=2-7302-1293-0 | pages=1â83}} * {{citation | first=Tauno | last=MetsĂ€nkylĂ€ | title=Catalan's conjecture: another old Diophantine problem solved | journal=[[Bulletin of the American Mathematical Society]] | volume=41 | year=2004 | issue=1 | pages=43â57 | doi=10.1090/S0273-0979-03-00993-5 | mr=2015449| url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf | doi-access=free }} * {{citation | first=Preda | last=MihÄilescu | author-link=Preda MihÄilescu | title=Primary Cyclotomic Units and a Proof of Catalan's Conjecture | journal=[[J. Reine Angew. Math.]] | volume=2004 | issue=572 | year=2004 | pages=167â195 | doi=10.1515/crll.2004.048 |mr=2076124}} * {{citation | first=Preda | last=MihÄilescu | title=Reflection, Bernoulli numbers and the proof of Catalan's conjecture | journal=European Congress of Mathematics | year=2005 | pages=325â340 | publisher=Eur. Math. Soc. | location=Zurich | mr=2185753 | url=https://www.uni-math.gwdg.de/preda/mihailescu-papers/catber.pdf | archive-url=https://web.archive.org/web/20220626111548/https://www.uni-math.gwdg.de/preda/mihailescu-papers/catber.pdf | archive-date=2022-06-26 | url-status=dead }} * {{citation | first=Paulo | last=Ribenboim | author-link=Paulo Ribenboim | title=Catalan's Conjecture | publisher=Academic Press, Inc. | location=Boston, MA | year=1994 | isbn=0-12-587170-8 | mr=1259738}} Predates MihÄilescu's proof. * {{citation | first=Robert | last=Tijdeman | author-link=Robert Tijdeman | title=On the equation of Catalan | journal=[[Acta Arith.]] | volume=29 | issue=2 | year=1976 | pages=197â209 | mr=0404137 | doi=10.4064/aa-29-2-197-209| url=https://www.impan.pl/shop/publication/transaction/download/product/100989?download.pdf | doi-access=free }} ==External links== * {{MathWorld | urlname=CatalansConjecture | title=Catalan's conjecture}} * [https://web.archive.org/web/20130122060110/http://www.maa.org/mathland/mathtrek_06_24_02.html Ivars Peterson's MathTrek] * [http://www.math.ubc.ca/~bennett/paper19.pdf On difference of perfect powers] * Jeanine Daems: [https://web.archive.org/web/20060221125555/http://www.math.leidenuniv.nl/~jdaems/scriptie/Catalan.pdf A Cyclotomic Proof of Catalan's Conjecture] {{Authority control}} [[Category:Conjectures]] [[Category:Conjectures that have been proved]] [[Category:Diophantine equations]] [[Category:Theorems in number theory]] [[Category:Abc conjecture]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:Authority control
(
edit
)
Template:Citation
(
edit
)
Template:Cite conference
(
edit
)
Template:Div col
(
edit
)
Template:Div col end
(
edit
)
Template:For
(
edit
)
Template:Harvnb
(
edit
)
Template:MathWorld
(
edit
)
Template:Math theorem
(
edit
)
Template:OEIS
(
edit
)
Template:Oeis
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Unsolved
(
edit
)
Template:Val
(
edit
)