Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Catalan's constant
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
{{short description|Number, approximately 0.916}} {{Distinguish|Catalan number}} {{infobox non-integer number | rationality = Unknown | symbol = ''G'' | decimal = {{gaps|0.91596|55941|77219|0150...}} }} [[File:Catalan constant area.png|thumb|catalan constant as area under the curve of arctanx /x]] {{CS1 config|mode=cs1}} In [[mathematics]], '''Catalan's constant''' {{mvar|G}}, is the alternating sum of the reciprocals of the odd [[Square number|square numbers]], being defined by: : <math>G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots,</math> where {{mvar|β}} is the [[Dirichlet beta function]]. Its numerical value<ref>{{cite book|last1=Papanikolaou|first1=Thomas| title=Catalan's Constant to 1,500,000 Places|url=https://www.gutenberg.org/ebooks/812|via=Gutenberg.org|date=March 1997}}</ref> is approximately {{OEIS|A006752}} : {{math|1=''G'' = {{val|0.915965594177219015054603514932384110774}}…}} Catalan's constant was named after [[Eugène Charles Catalan]], who found quickly-converging series for its calculation and published a memoir on it in 1865.<ref>{{citation | last = Goldstein | first = Catherine | author-link = Catherine Goldstein | journal = Bulletin de la Société Royale des Sciences de Liège | mr = 3498215 | pages = 74–92 | title = The mathematical achievements of Eugène Catalan | url = https://popups.uliege.be/0037-9565/index.php?id=4830 | volume = 84 | year = 2015}}</ref><ref>{{citation | last = Catalan | first = E. | author-link = Eugène Charles Catalan | hdl = 2268/193841 | language = fr | location = Brussels | series = Mémoires de l'Académie royale des sciences, des lettres et des beaux-arts de Belgique | title = Mémoire sur la transformation des séries et sur quelques intégrales définies | journal = Ers, Publiés Par l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. Collection in 4 | volume = 33 | year = 1865}}</ref> ==Uses== In [[low-dimensional topology]], Catalan's constant is 1/4 of the volume of an [[ideal polyhedron|ideal]] hyperbolic [[octahedron]], and therefore 1/4 of the [[hyperbolic volume]] of the complement of the [[Whitehead link]].<ref>{{citation | last = Agol | first = Ian | author-link = Ian Agol | doi = 10.1090/S0002-9939-10-10364-5 | issue = 10 | journal = [[Proceedings of the American Mathematical Society]] | mr = 2661571 | pages = 3723–3732 | title = The minimal volume orientable hyperbolic 2-cusped 3-manifolds | volume = 138 | year = 2010| arxiv = 0804.0043| s2cid = 2016662 }}.</ref> It is 1/8 of the volume of the complement of the [[Borromean rings]].<ref>{{Citation |author=William Thurston|author-link=William Thurston |date=March 2002 |title=The Geometry and Topology of Three-Manifolds |url=http://library.msri.org/books/gt3m/ |chapter=7. Computation of volume |chapter-url=http://library.msri.org/books/gt3m/PDF/7.pdf |archive-url=https://web.archive.org/web/20110125012649/http://library.msri.org/books/gt3m/PDF/7.pdf |archive-date=2011-01-25 |url-status=live |page=165}}</ref> In [[combinatorics]] and [[statistical mechanics]], it arises in connection with counting [[domino tiling]]s,<ref>{{citation | last1 = Temperley | first1 = H. N. V. | author1-link = Harold Neville Vazeille Temperley | last2 = Fisher | first2 = Michael E. | author2-link = Michael Fisher | date = August 1961 | doi = 10.1080/14786436108243366 | issue = 68 | journal = [[Philosophical Magazine]] | pages = 1061–1063 | title = Dimer problem in statistical mechanics—an exact result | volume = 6| bibcode = 1961PMag....6.1061T }}</ref> [[spanning tree]]s,<ref>{{citation | last = Wu | first = F. Y. | doi = 10.1088/0305-4470/10/6/004 | issue = 6 | journal = Journal of Physics | mr = 489559 | pages = L113–L115 | title = Number of spanning trees on a lattice | volume = 10 | year = 1977| bibcode = 1977JPhA...10L.113W }}</ref> and [[Hamiltonian cycle]]s of [[grid graph]]s.<ref>{{citation | last = Kasteleyn | first = P. W. | author-link = Pieter Kasteleyn | doi = 10.1016/S0031-8914(63)80241-4 | journal = [[Physica (journal)|Physica]] | mr = 159642 | pages = 1329–1337 | title = A soluble self-avoiding walk problem | volume = 29 | year = 1963| issue = 12 | bibcode = 1963Phy....29.1329K }}</ref> In [[number theory]], Catalan's constant appears in a conjectured formula for the asymptotic number of primes of the form <math>n^2+1</math> according to [[Ulam spiral#Hardy and Littlewood's Conjecture F|Hardy and Littlewood's Conjecture F]]. However, it is an unsolved problem (one of [[Landau's problems]]) whether there are even infinitely many primes of this form.<ref>{{citation | last = Shanks | first = Daniel | author-link = Daniel Shanks | journal = Mathematical Tables and Other Aids to Computation | mr = 105784 | pages = 78–86 | title = A sieve method for factoring numbers of the form <math>n^2+1</math> | volume = 13 | year = 1959| doi = 10.2307/2001956 | jstor = 2001956 }}</ref> Catalan's constant also appears in the calculation of the [[mass distribution]] of [[spiral galaxy|spiral galaxies]].<ref>{{citation | last1 = Wyse | first1 = A. B. | author1-link=Arthur Bambridge Wyse | last2 = Mayall | first2 = N. U. | bibcode = 1942ApJ....95...24W | date = January 1942 | doi = 10.1086/144370 | journal = [[The Astrophysical Journal]] | pages = 24–47 | title = Distribution of Mass in the Spiral Nebulae Messier 31 and Messier 33. | volume = 95| doi-access = free }}</ref><ref>{{citation | last = van der Kruit | first = P. C. | bibcode = 1988A&A...192..117V | date = March 1988 | journal = [[Astronomy & Astrophysics]] | pages = 117–127 | title = The three-dimensional distribution of light and mass in disks of spiral galaxies. | volume = 192}}</ref> ==Properties== {{unsolved|mathematics|Is Catalan's constant irrational? If so, is it transcendental?}} It is not known whether {{mvar|G}} is [[irrational number|irrational]], let alone [[transcendental number|transcendental]].<ref>{{citation | last = Nesterenko | first = Yu. V. | date = January 2016 | doi = 10.1134/s0081543816010107 | issue = 1 | journal = Proceedings of the Steklov Institute of Mathematics | pages = 153–170 | title = On Catalan's constant | volume = 292| s2cid = 124903059 }}.</ref> {{mvar|G}} has been called "arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven".<ref>{{citation | last1 = Bailey | first1 = David H. | last2 = Borwein | first2 = Jonathan M. | last3 = Mattingly | first3 = Andrew | last4 = Wightwick | first4 = Glenn | doi = 10.1090/noti1015 | issue = 7 | journal = [[Notices of the American Mathematical Society]] | mr = 3086394 | pages = 844–854 | title = The computation of previously inaccessible digits of <math>\pi^2</math> and Catalan's constant | volume = 60 | year = 2013| doi-access = free }}</ref> There exist however partial results. It is known that infinitely many of the numbers ''β''(2''n'') are irrational, where ''β(s)'' is the Dirichlet beta function.<ref>{{Cite journal |last1=Rivoal |first1=T. |last2=Zudilin |first2=W. |date=2003-08-01 |title=Diophantine properties of numbers related to Catalan's constant |url=https://link.springer.com/article/10.1007/s00208-003-0420-2 |journal=Mathematische Annalen |language=en |volume=326 |issue=4 |pages=705–721 |doi=10.1007/s00208-003-0420-2 |hdl=1959.13/803688 |issn=1432-1807}}</ref> In particular at least one of ''β''(2), ''β''(4), ''β''(6), ''β''(8), ''β''(10) and ''β''(12) must be irrational, where ''β''(2) is Catalan's constant.<ref>{{Cite journal |last=Zudilin |first=Wadim |date=2018-04-26 |title=Arithmetic of Catalan's constant and its relatives |journal=Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg |volume=89 |pages=45–53 |doi=10.1007/s12188-019-00203-w |arxiv=1804.09922 |language=en}}</ref> These results by [[Wadim Zudilin]] and [[Tanguy Rivoal]] are related to similar ones given for the [[Particular values of the Riemann zeta function#Odd positive integers|odd zeta constants]] ζ(2''n+1''). Catalan's constant is known to be an [[Period (algebraic geometry)|algebraic period]], which follows from some of the double integrals given below. ==Series representations== Catalan's constant appears in the evaluation of several rational series including:<ref name=":0">{{Cite web |last=Weisstein |first=Eric W. |title=Catalan's Constant |url=https://mathworld.wolfram.com/CatalansConstant.html |access-date=2024-10-02 |website=mathworld.wolfram.com |language=en}}</ref><math display="block">\frac{\pi^2}{16}+\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+1)^2}.</math><math display="block">\frac{\pi^2}{16}-\frac G2 = \sum_{n=0}^\infty \frac{1}{(4n+3)^2}.</math> The following two formulas involve quickly converging series, and are thus appropriate for numerical computation: <math display="block">\begin{align} G & = 3 \sum_{n=0}^\infty \frac{1}{2^{4n}} \left(-\frac{1}{2(8n+2)^2}+\frac{1}{2^2(8n+3)^2}-\frac{1}{2^3(8n+5)^2}+\frac{1}{2^3(8n+6)^2}-\frac{1}{2^4(8n+7)^2}+\frac{1}{2(8n+1)^2}\right) \\ & \qquad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}} \left(\frac{1}{2^4(8n+2)^2}+\frac{1}{2^6(8n+3)^2}-\frac{1}{2^9(8n+5)^2}-\frac{1}{2^{10} (8n+6)^2}-\frac{1}{2^{12} (8n+7)^2}+\frac{1}{2^3(8n+1)^2}\right) \end{align}</math> and <math display="block">G = \frac{\pi}{8}\log\left(2 + \sqrt{3}\right) + \frac{3}{8}\sum_{n=0}^\infty \frac{1}{(2n+1)^2 \binom{2n}{n}}.</math> The theoretical foundations for such series are given by Broadhurst, for the first formula,<ref>{{cite arXiv|first1=D. J. |last1=Broadhurst|eprint=math.CA/9803067 |title=Polylogarithmic ladders, hypergeometric series and the ten millionth digits of {{math|''ζ''(3)}} and {{math|''ζ''(5)}}| year=1998}}</ref> and Ramanujan, for the second formula.<ref>{{cite book|first=B. C.|last=Berndt|title=Ramanujan's Notebook, Part I|publisher=Springer Verlag|date=1985|page=289|isbn=978-1-4612-1088-7}}</ref> The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.<ref>{{cite journal|first=E. A.| last=Karatsuba| title=Fast evaluation of transcendental functions|journal=Probl. Inf. Transm.|volume=27|issue=4| pages=339–360| date=1991|zbl=0754.65021|mr=1156939}}</ref><ref>{{cite book|first=E. A.|last=Karatsuba|contribution=Fast computation of some special integrals of mathematical physics|title=Scientific Computing, Validated Numerics, Interval Methods| url=https://archive.org/details/scientificcomput00wals_919|url-access=limited|editor1-first=W.|editor1-last=Krämer| editor2-first=J. W.|editor2-last=von Gudenberg|pages=[https://archive.org/details/scientificcomput00wals_919/page/n35 29]–41|date=2001|doi=10.1007/978-1-4757-6484-0_3|isbn=978-1-4419-3376-8 }}</ref> Using these series, calculating Catalan's constant is now about as fast as calculating [[Apéry's constant]], <math>\zeta(3)</math>.<ref name="Yee_formulas" /> Other quickly converging series, due to Guillera and Pilehrood and employed by the [[y-cruncher]] software, include:<ref name="Yee_formulas">{{cite web|url=http://www.numberworld.org/y-cruncher/internals/formulas.html|title=Formulas and Algorithms|author=Alexander Yee|date=14 May 2019|access-date=5 December 2021}}</ref> :<math>G = \frac{1}{2}\sum_{k=0}^{\infty }\frac{(-8)^{k}(3k+2)}{(2k+1)^{3}{\binom{2k}{k}}^{3}}</math> :<math>G = \frac{1}{64}\sum_{k=1}^{\infty }\frac{256^{k}(580k^2-184k+15)}{k^3(2k-1)\binom{6k}{3k}\binom{6k}{4k}\binom{4k}{2k}}</math> :<math>G = -\frac{1}{1024}\sum_{k=1}^{\infty }\frac{(-4096)^k(45136k^4-57184k^3+21240k^2-3160k+165)}{k^3(2k-1)^3}\left( \frac{(2k)!^6(3k)!^3}{k!^3(6k)!^3} \right)</math> All of these series have [[time complexity]] <math>O(n\log(n)^3)</math>.<ref name="Yee_formulas"/> ==Integral identities== As Seán Stewart writes, "There is a rich and seemingly endless source of definite integrals that can be equated to or expressed in terms of Catalan's constant."<ref>{{citation | last = Stewart | first = Seán M. | doi = 10.1017/mag.2020.99 | issue = 561 | journal = [[The Mathematical Gazette]] | mr = 4163926 | pages = 449–459 | title = A Catalan constant inspired integral odyssey | volume = 104 | year = 2020| s2cid = 225116026 }}</ref> Some of these expressions include: <math display="block">\begin{align} G &= -\frac{1}{\pi i}\int_{0}^{\frac{\pi}{2}} \ln\ln \tan x \ln \tan x \,dx \\[3pt] G &= \iint_{[0,1]^2} \! \frac{1}{1+x^2 y^2} \,dx\, dy \\[3pt] G &= \int_0^1\int_0^{1-x} \frac{1}{1 -x^2-y^2} \,dy\,dx \\[3pt] G &= \int_1^\infty \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= -\int_0^1 \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \frac{t}{\sin t} \,dt \\[3pt] G &= \int_0^\frac{\pi}{4} \ln \cot t \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \ln \left( \sec t +\tan t \right) \,dt \\[3pt] G &= \int_0^1 \frac{\arccos t}{\sqrt{1+t^2}} \,dt \\[3pt] G &= \int_0^1 \frac{\operatorname{arcsinh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\operatorname{arctan} t}{t\sqrt{1+t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^1 \frac{\operatorname{arctanh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \int_0^\infty \arccot e^{t} \,dt \\[3pt] G &= \frac{1}{4} \int_0^{{\pi^2}/{4}} \csc \sqrt{t} \,dt \\[3pt] G &= \frac{1}{16} \left(\pi^2 + 4\int_1^\infty \arccsc^2 t \,dt\right) \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{t}{\cosh t} \,dt \\[3pt] G &= \frac{\pi}{2} \int_1^\infty \frac{\left(t^4-6t^2+1\right)\ln\ln t}{\left(1+t^2\right)^3} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\arcsin \left(\sin t\right)}{t} \,dt \\[3pt] G &= 1 + \lim_{\alpha\to{1^-}}\!\left\{\int_0^{\alpha}\!\frac{\left(1+6t^2+t^4\right)\arctan{t}}{t\left(1-t^2\right)^2}\, dt + 2\operatorname{artanh}{\alpha} - \frac{\pi\alpha}{1-\alpha^2} \right\} \\[3pt] G &= 1 - \frac18 \iint_{\R^2}\!\!\frac{x\sin\left(2xy/\pi\right)}{\,\left(x^2+\pi^2\right)\cosh x\sinh y\,} \,dx\,dy \\[3pt] G &= \int_{0}^{\infty}\int_{0}^{\infty}\frac{\sqrt[4]{x} \left(\sqrt{x} \sqrt{y}-1\right)}{(x+1)^2 \sqrt[4]{y} (y+1)^2 \log (x y)}dxdy \end{align}</math> where the last three formulas are related to [[Carl Johan Malmsten|Malmsten's]] integrals.<ref>{{Cite journal| first1=Iaroslav| last1=Blagouchine| title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results| year=2014| doi=10.1007/s11139-013-9528-5| url=https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| volume=35| journal=The Ramanujan Journal| pages=21–110| s2cid=120943474| access-date=2018-10-01| archive-url=https://web.archive.org/web/20181002020243/https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf| archive-date=2018-10-02| url-status=dead }}</ref> If {{math|K(''k'')}} is the [[Elliptic integral#Complete elliptic integral of the first kind|complete elliptic integral of the first kind]], as a function of the elliptic modulus {{math|''k''}}, then <math display="block"> G = \tfrac{1}{2} \int_0^1 \mathrm{K}(k)\,dk </math> If {{math|E(''k'')}} is the [[Elliptic integral#Complete elliptic integral of the second kind|complete elliptic integral of the second kind]], as a function of the elliptic modulus {{math|''k''}}, then <math display="block"> G = -\tfrac{1}{2}+\int_0^1 \mathrm{E}(k)\,dk </math> With the [[gamma function]] {{math|1=Γ(''x'' + 1) = ''x''!}} <math display="block">\begin{align} G &= \frac{\pi}{4} \int_0^1 \Gamma\left(1+\frac{x}{2}\right)\Gamma\left(1-\frac{x}{2}\right)\,dx \\ &= \frac{\pi}{2} \int_0^\frac12\Gamma(1+y)\Gamma(1-y)\,dy \end{align}</math> The integral <math display="block"> G = \operatorname{Ti}_2(1)=\int_0^1 \frac{\arctan t}{t}\,dt </math> is a known special function, called the [[inverse tangent integral]], and was extensively studied by [[Srinivasa Ramanujan]]. ==Relation to special functions== {{mvar|G}} appears in values of the second [[polygamma function]], also called the [[trigamma function]], at fractional arguments:<ref name=":0" /> <math display="block">\begin{align} \psi_1 \left(\tfrac14\right) &= \pi^2 + 8G \\ \psi_1 \left(\tfrac34\right) &= \pi^2 - 8G. \end{align}</math> [[Simon Plouffe]] gives an infinite collection of identities between the trigamma function, {{pi}}<sup>2</sup> and Catalan's constant; these are expressible as paths on a graph. Catalan's constant occurs frequently in relation to the [[Clausen function]], the [[inverse tangent integral]], the [[inverse sine integral]], the [[Barnes G-function|Barnes {{mvar|G}}-function]], as well as integrals and series summable in terms of the aforementioned functions. As a particular example, by first expressing the [[inverse tangent integral]] in its closed form – in terms of Clausen functions – and then expressing those Clausen functions in terms of the Barnes {{mvar|G}}-function, the following expression is obtained (see [[Clausen function]] for more): <math display="block">G=4\pi \log\left( \frac{ G\left(\frac{3}{8}\right) G\left(\frac{7}{8}\right) }{ G\left(\frac{1}{8}\right) G\left(\frac{5}{8}\right) } \right) +4 \pi \log \left( \frac{ \Gamma\left(\frac{3}{8}\right) }{ \Gamma\left(\frac{1}{8}\right) } \right) +\frac{\pi}{2} \log \left( \frac{1+\sqrt{2} }{2 \left(2-\sqrt{2}\right)} \right).</math> If one defines the '''[[Lerch transcendent]]''' {{math|Φ(''z'',''s'',''α'')}} by <math display="block">\Phi(z, s, \alpha) = \sum_{n=0}^\infty \frac { z^n} {(n+\alpha)^s},</math> then <math display="block"> G = \tfrac{1}{4}\Phi\left(-1, 2, \tfrac{1}{2}\right).</math> ==Continued fraction== {{mvar|G}} can be expressed in the following form:<ref>{{cite journal | journal=Acta Arithmetica |volume=103 |issue=4 |pages=329–342 | author=Bowman, D. | author2=Mc Laughlin, J.| name-list-style=amp | title=Polynomial continued fractions | language=English | year=2002 |doi=10.4064/aa103-4-3 |arxiv=1812.08251 |bibcode=2002AcAri.103..329B |s2cid=119137246 | url=https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/4paper1.pdf |archive-url=https://web.archive.org/web/20200413012537/https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/4paper1.pdf |archive-date=2020-04-13 |url-status=live}}</ref> :<math>G=\cfrac{1}{1+\cfrac{1^4}{8+\cfrac{3^4}{16+\cfrac{5^4}{24+\cfrac{7^4}{32+\cfrac{9^4}{40+\ddots}}}}}}</math> The simple continued fraction is given by:<ref>{{Cite web |title=A014538 - OEIS |url=http://oeis.org/A014538 |access-date=2022-10-27 |website=oeis.org}}</ref> :<math>G=\cfrac{1}{1+\cfrac{1}{10+\cfrac{1}{1+\cfrac{1}{8+\cfrac{1}{1+\cfrac{1}{88+\ddots}}}}}}</math> This continued fraction would have infinite terms if and only if <math>G</math> is irrational, which is still unresolved. ==Known digits== The number of known digits of Catalan's constant {{mvar|G}} has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.<ref name=Gourdon>{{cite web|last1=Gourdon|first1=X.|last2=Sebah|first2=P.|url=http://numbers.computation.free.fr/Constants/constants.html|title=Constants and Records of Computation|access-date=11 September 2007}}</ref> {| class="wikitable" style="margin: 1em auto 1em auto" |+ Number of known decimal digits of Catalan's constant {{mvar|G}} ! Date || Decimal digits || Computation performed by |- | 1832 ||align="right"| 16 || [[Thomas Clausen (mathematician)|Thomas Clausen]] |- | 1858 ||align="right"| 19 || Carl Johan Danielsson Hill |- | 1864 ||align="right"| 14 || [[Eugène Charles Catalan]] |- | 1877 ||align="right"| 20 || [[James Whitbread Lee Glaisher|James W. L. Glaisher]] |- | 1913 ||align="right"| 32 || [[James Whitbread Lee Glaisher|James W. L. Glaisher]] |- | 1990 ||align="right"| {{val|20000}} || Greg J. Fee |- | 1996 ||align="right"| {{val|50000}} || Greg J. Fee |- | August 14, 1996 ||align="right"| {{val|100000}} || Greg J. Fee & [[Simon Plouffe]] |- | September 29, 1996 ||align="right"| {{val|300000}} || Thomas Papanikolaou |- | 1996 ||align="right"| {{val|1500000}} || Thomas Papanikolaou |- | 1997 ||align="right"| {{val|3379957}} || Patrick Demichel |- | January 4, 1998 ||align="right"| {{val|12500000}} || Xavier Gourdon |- | 2001 ||align="right"| {{val|100000500}} || Xavier Gourdon & Pascal Sebah |- | 2002 ||align="right"| {{val|201000000}} || Xavier Gourdon & Pascal Sebah |- | October 2006 ||align="right"| {{val|5000000000}} || Shigeru Kondo & Steve Pagliarulo<ref>{{Cite web |url=http://ja0hxv.calico.jp/pai/ecatalan.html |title=Shigeru Kondo's website |access-date=2008-01-31 |archive-url=https://web.archive.org/web/20080211185703/http://ja0hxv.calico.jp/pai/ecatalan.html |archive-date=2008-02-11 |url-status=dead }}</ref> |- | August 2008 ||align="right"| {{val|10000000000}} || Shigeru Kondo & Steve Pagliarulo<ref name=Gourdon /> |- | January 31, 2009 ||align="right"| {{val|15510000000}} || Alexander J. Yee & Raymond Chan<ref name=yee_chan>{{cite web| url = http://www.numberworld.org/nagisa_runs/computations.html| title = Large Computations |accessdate=31 January 2009}}</ref> |- | April 16, 2009 ||align="right"| {{val|31026000000}} || Alexander J. Yee & Raymond Chan<ref name=yee_chan/> |- | June 7, 2015 ||align="right"| {{val|200000001100}} || Robert J. Setti<ref name=setti>{{cite web| url = http://www.numberworld.org/digits/Catalan/| title = Catalan's constant records using YMP |access-date=14 May 2016}}</ref> |- | April 12, 2016 ||align="right"| {{val|250000000000}} || Ron Watkins<ref name=setti/> |- | February 16, 2019 ||align="right"| {{val|300000000000}} || Tizian Hanselmann<ref name=setti/> |- | March 29, 2019 ||align="right"| {{val|500000000000}} || Mike A & Ian Cutress<ref name=setti/> |- | July 16, 2019 ||align="right"| {{val|600000000100}} || Seungmin Kim<ref name=yee>{{cite web |url = http://www.numberworld.org/y-cruncher/ |title = Catalan's constant records using YMP |archive-url=https://web.archive.org/web/20190722034426/http://www.numberworld.org/y-cruncher/ |archive-date=22 July 2019 |url-status=dead |access-date=22 July 2019}}</ref><ref name=kim>{{cite web| url = https://ehfd.github.io/world-record/catalans-constant/| title = Catalan's constant world record by Seungmin Kim| date = 23 July 2019 |access-date=17 October 2020}}</ref> |- | September 6, 2020 ||align="right"| {{val|1000000001337}} || Andrew Sun<ref name=yrecord>{{Cite web|title=Records set by y-cruncher|url=http://www.numberworld.org/y-cruncher/records.html|access-date=2022-02-13|website=www.numberworld.org}}</ref> |- | March 9, 2022 ||align="right"| {{val|1200000000100}} || Seungmin Kim<ref name=yrecord/> |- |} ==See also == * [[Gieseking manifold]] * [[List of mathematical constants]] * [[Mathematical constant]] * [[Particular values of Riemann zeta function]] ==References== {{reflist}} ==Further reading== * {{cite journal |first = Victor |last = Adamchik |year = 2002 |journal = Zeitschrift für Analysis und ihre Anwendungen |volume = 21 |issue = 3 |pages = 1–10 |title = A certain series associated with Catalan's constant |mr = 1929434 |doi = 10.4171/ZAA/1110 |doi-access = free }} * {{cite conference | last = Fee | first = Gregory J. | editor1-last = Watanabe | editor1-first = Shunro | editor2-last = Nagata | editor2-first = Morio | contribution = Computation of Catalan's Constant Using Ramanujan's Formula | doi = 10.1145/96877.96917 | isbn = 0201548925 | s2cid = 1949187 | pages = 157–160 | publisher = ACM | title = Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC '90, Tokyo, Japan, August 20-24, 1990 | year = 1990| doi-access = free }} * {{Cite journal | first = David M. | last = Bradley | title = A class of series acceleration formulae for Catalan's constant | doi = 10.1023/A:1006945407723 | year = 1999 | journal = The Ramanujan Journal | volume = 3 | issue = 2 | pages = 159–173 | mr = 1703281 | arxiv = 0706.0356 | bibcode = 2007arXiv0706.0356B | s2cid = 5111792 }} ==External links== * {{cite web | first = Victor | last = Adamchik | url = http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm | title = 33 representations for Catalan's constant | archiveurl = https://web.archive.org/web/20160807111945/https://www.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm | archivedate = 2016-08-07 | access-date = 14 July 2005 }} * {{cite web | first = Simon | last = Plouffe | url = http://www.lacim.uqam.ca/~plouffe/IntegerRelations/identities3a.html | title = A few identities (III) with Catalan | year = 1993 | archiveurl = https://web.archive.org/web/20190626124124/https://lacim.uqam.ca/~plouffe/IntegerRelations/identities3a.html | archivedate = 2019-06-26 | access-date = 29 July 2005 }} (Provides over one hundred different identities). * {{cite web | first = Simon | last = Plouffe | url = http://www.lacim.uqam.ca/~plouffe/IntegerRelations/identities3.html | title = A few identities with Catalan constant and Pi^2 | year = 1999 | archiveurl = https://web.archive.org/web/20190626124128/https://lacim.uqam.ca/~plouffe/IntegerRelations/identities3.html | archivedate = 2019-06-26 | access-date = 29 July 2005 }} (Provides a graphical interpretation of the relations) * {{cite book | first = Greg | last = Fee | url = https://www.gutenberg.org/ebooks/682 | title = Catalan's Constant (Ramanujan's Formula) | year = 1996 }} (Provides the first 300,000 digits of Catalan's constant) * {{citation | first = David M. | last = Bradley | title = Representations of Catalan's constant | citeseerx = 10.1.1.26.1879 | year = 2001 | url = https://www.researchgate.net/publication/2325473 | mode = cs1 }} * {{cite web | first = Fredrik | last = Johansson |url = https://fungrim.org/ordner/0.915965594177219015054603514932/ | title = 0.915965594177219015054603514932 | work = Ordner, a catalog of real numbers in Fungrim | accessdate= 21 April 2021 }} * {{cite web | title = Catalan's Constant | url = https://www.youtube.com/watch?v=e5wqw2_EkxQ&list=PLW1_9UnhaSkGqlwbQphLMGCx2JvaGu1HB&index=72 | publisher = Let's Learn, Nemo! | date = 10 August 2020 | website = [[YouTube]] | access-date= 6 April 2021 }} * {{MathWorld |title = Catalan's Constant |urlname = CatalansConstant}} * {{WolframFunctionsSite |title = Catalan constant: Series representations |urlname = Constants/Catalan/06/01/}} * {{springer |title = Catalan constant |id = p/c130040 | mode=cs1}} [[Category:Combinatorics]] [[Category:Mathematical constants]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)
Pages transcluded onto the current version of this page
(
help
)
:
Template:CS1 config
(
edit
)
Template:Citation
(
edit
)
Template:Cite arXiv
(
edit
)
Template:Cite book
(
edit
)
Template:Cite conference
(
edit
)
Template:Cite journal
(
edit
)
Template:Cite web
(
edit
)
Template:Distinguish
(
edit
)
Template:Infobox non-integer number
(
edit
)
Template:Math
(
edit
)
Template:MathWorld
(
edit
)
Template:Mvar
(
edit
)
Template:OEIS
(
edit
)
Template:Pi
(
edit
)
Template:Reflist
(
edit
)
Template:SfnRef
(
edit
)
Template:Short description
(
edit
)
Template:Springer
(
edit
)
Template:Unsolved
(
edit
)
Template:Val
(
edit
)
Template:WolframFunctionsSite
(
edit
)